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Abstract 

In various sectors, such as retail, firms encounter customers with multiunit demand and often implement 

nonlinear pricing to accommodate this demand structure. While effective, this pricing strategy lacks the 

adaptability offered by dynamic pricing, a trend gaining significance in the retail landscape due to 

technological advancements. Neglecting multiunit demand in dynamic pricing, however, can result in 

suboptimal prices and revenue losses. In response, this paper introduces multiunit dynamic pricing 

which integrates the strengths of both nonlinear and dynamic pricing strategies. 

We formulate a stage-wise optimization problem, considering customer preferences for batches of a 

product through a model based on random willingness-to-pay. The willingness-to-pay is influenced by 

a combination of the customer's attraction to and consumption of the product—both private information. 

The firm, functioning as a monopoly, has the ability to price-discriminate between various order sizes 

by quoting nonlinear batch prices. 

Our investigation explores three cases of observable information: attraction to the product, consumption 

of the product, or both. Optimality conditions are derived for all cases, establishing a closed-form 

expressions for two of them. Additionally, we demonstrate the preservation of desirable monotonicity 

in time and capacity. Leveraging this monotonicity, we showcase the dynamics of the optimal pricing 

policy. A simulation study underscores the potential of our approach, highlighting the value of 

information in supporting strategic decisions, particularly regarding investments in customer profiling 

and segmentation. Furthermore, we illustrate how our solutions enable firms to make informed stocking 

and restocking decisions, providing practical insights for firms in multiunit dynamic pricing 

environments. 

Keywords: Revenue Management, Dynamic Pricing, Nonlinear Pricing, Multiunit Purchases, Customer 

Choice  
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1 Introduction 
Nonlinear pricing has been a widespread practice in many industries, particularly in retail, for quite 

some time. The objective of this pricing strategy is to increase overall demand by tempting customers 

to buy more. Examples of nonlinear pricing include special offers such as "buy 3, pay 2" or "take an 

additional item, get 25% off," as well as volume discounts where customers pay lower unit prices for 

purchasing more units. 

Dynamic pricing, on the other hand, is a relatively new field but its significance has been growing in 

recent years, particularly with the emergence of e-commerce and digital price tags in physical stores. 

With the capability of quickly adjusting prices, dynamic pricing has had a significant impact on various 

industries such as travel, hospitality, entertainment, electricity, and retail. Through e-commerce 

platforms and loyalty cards, sellers have access to more information about a customer's purchasing 

behavior which, combined with the ability to adjust prices, can significantly influence a seller's earnings. 

Standard dynamic pricing assumes that customers will buy only one unit at a time. While this assumption 

may be reasonable in some cases (such as car rental or hotel rooms), it is not applicable in many other 

situations, such as for most grocery and fashion products. Neglecting the possibility to influence 

customers’ purchase quantity can lead to suboptimal prices and lost revenue in these cases. To fully 

leverage the revenue potential in such fields, a combination of nonlinear and dynamic pricing is highly 

desirable. 

This paper addresses precisely such a scenario by introducing nonlinear prices in a multiunit dynamic 

pricing setting. Here, customers are assumed to have multiunit demand and the product is available for 

purchase in all batch sizes, ranging from a single unit to the entirety of the remaining stock. The purchase 

quantity is influenced by a nonlinear pricing scheme, deviating from the traditional approach of quoting 

a single unit price with batch prices derived from multiplying batch size by unit price. The objective is 

to dynamically quote batch prices for a single product to maximize expected revenue. The selling 

horizon and product inventory are limited, and after prices are quoted for each batch size, customers 

purchase one of these batches or nothing at all.  

Our model assumes customers hold an undisclosed willingness-to-pay for each batch size, optimizing 

their utility by choosing the batch size with the greatest surplus over the quoted price. To capture this, 

we use a two-parameter approach – integrating a base willingness-to-pay reflecting interest and a 

consumption indicator signaling diminishing marginal appreciation. Both parameters are modeled as 

random variables. Additionally, we explore scenarios where the firm gains insight into the next 

customer's choice parameters, observing their base willingness-to-pay, consumption indicator, or both 

before quoting batch prices. This mirrors practices in personalized online pricing, profiling logged-in 

customers based on purchase history. For non-logged-in customers, technologies like applets and 

cookies facilitate customer profiling (see e.g., Raghu et al., 2001).  
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We contribute to the multiunit dynamic pricing literature through a stochastic dynamic optimization 

model. This model quotes batch prices, influencing random customer demand to maximize expected 

revenue. We consider various types of observable information about customer choice parameters, 

adapting the model for each type and solving it analytically. Our study reveals key properties of the 

value function and optimal batch prices. Notably, we prove the monotonicity of expected revenues with 

respect to capacity and time, in the context of multiunit purchases. This property aligns with an intuitive 

understanding of pricing dynamics relative to product scarcity. Importantly, the monotonicity in 

capacity ensures a unique optimal solution in our stage-wise optimization. 

In our simulation study, we examine the value of information by comparing the three types of 

observation. Additionally, we consider a scenario where the firm lacks the ability to observe customers' 

choice parameters. For this situation, Schur (2023) proposed a heuristic solution mechanism, which we 

briefly explain and apply. Furthermore, we assess the impact of distribution on expected revenues, 

assuming both uniform and normal distributions. In another study, we relax the assumption of precise 

customer information observation. Instead, we allow the firm to accurately assign customers to 

predefined segments, narrowing down the distribution of corresponding random variables. Lastly, we 

introduce an additional layer of decision-making: stocking and restocking. 

The implications of our work can be summarized as follows:  

 When the firm accurately observes one or both of customers' choice parameters, our models 

offer optimal batch prices for every state in the selling horizon. Moreover, knowing the optimal 

expected revenue for every stocking level enables the firm to make optimal stocking and 

restocking decision.  

 Understanding the value of information allows firms to evaluate the profitability of potential 

investments in customer profiling or segmenting, contributing to strategic decision-making in 

the ever-evolving landscape of dynamic pricing. 

 Our value function serves as an upper bound in restricted pricing scenarios, aiding firms in 

assessing potential revenue losses from pricing structure limitations (e.g., linear price with 

volume discounts like “3 for 2”).  

 In settings where customer parameters are unobservable, our findings offer valuable structural 

insights. These insights can serve as the foundation for effective heuristics, ranging from simple 

business rules (e.g., "additional units at a 10% discount") to more sophisticated strategies (refer 

to Schur, 2023).  

This paper is organized as follows: In Section 2, we give a short overview of existing literature connected 

to multiunit dynamic pricing. We then present the setting, the customer choice as well as a general 

optimization model in Section 3. In Section 4, we present three adjustments to the general model to deal 

with three types of observations regarding customer choice parameters. In Section 5, we conduct our 

simulation study. 
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2 Literature review 
In this paper, we extend dynamic pricing with nonlinear pricing. Accordingly, we start by shortly 

reviewing literature from both streams, nonlinear pricing and dynamic pricing. Thereafter, we focus on 

research belonging to multiunit or multiproduct dynamic pricing. The first category also covers the 

(scarce) literature on nonlinear dynamic pricing (as nonlinear pricing requires multiunit demand). The 

second category is primarily related to our setting because of the applied customer choice models where 

customer choose one of several options. 

Nonlinear pricing is an often-applied pricing scheme that can be found in many industries including e.g. 

telecommunications, transportation, energy, supply chains, and retail. This broadness results in a diverse 

body of literature and is addressed by Wilson (1993) by giving an overview of application, substantial 

economics and marketing. Most nonlinear pricing research from the economics literature considers only 

static pricing. This can be observed in the review articles of Stole (2007) and Armstrong (2016) where 

only a small portion of covered literature assumes a dynamic environment. This literature commonly 

assumes these dynamics stem from competing firms and lock-in effects of recurring customers. More 

relevant to our setting is literature that focus on a dynamic environment stemming from dynamic demand 

(e.g., Dhebar & Oren, 1986, and Braden & Oren, 1994). However, different to our setting, this research 

does not consider a product with limited stock which is one of the core assumptions in most of dynamic 

pricing literature (cf., e.g., Talluri & van Ryzin, 2004 (Chapter 5) and Phillips, 2005 (Chapter 10)).  

In the following, we turn our attention on dynamic pricing of a product with limited stock, finite selling 

horizon, and customer choice behavior. One of the first to consider such a setting were Gallego and van 

Ryzin (1994) who showed that the optimal price increases with remaining time and decreases with 

remaining stock. Their work laid the foundation for dynamic pricing as an emerging discipline in 

revenue management, which, during that period, was predominantly influenced by capacity control. 

Afterwards, dynamic pricing gained a lot of attention by researchers. They often focused on finding 

optimality conditions and showing monotonic behavior in time and capacity. This research was 

summarized by several review articles (e.g., Bitran & Caldentey, 2003, Chiang et al., 2007, and, with a 

special focus, Gönsch et al., 2013 and den Boer, 2015) as well as textbooks (e.g. Talluri & van Ryzin, 

2004 (Chapter 5) and Phillips, 2005 (Chapter 10)). 

By dropping the common assumption that customers purchase at most one unit of a product, a new 

stream in the dynamic pricing community was born. Multiunit dynamic pricing considers multiunit 

demand, which, in turn, is the basis for combining nonlinear and dynamic pricing. An early publication 

in this stream is Elmaghraby et al. (2008) where the optimal design of a markdown pricing mechanism 

in the presence of multiunit demand was analyzed. They assume a full information setting meaning that 

the firm knows at the beginning of the selling horizon every customer and the respective values of their 

willingness-to-pay. This setting aligns to one of the three scenarios in our study (refer to Section 4.3). 

In this scenario, we assume full information availability regarding the current customer. In contrast, the 
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other two scenarios (outlined in Sections 4.1 and 4.2) involve customer decisions based on private, 

rendering them unpredictable in advance. Furthermore, future revenues remain uncertain across all 

scenarios. Thereby, we acknowledge that firms typically cannot accurately predict specific customer 

streams or their purchasing behavior with absolute certainty. Levin et al. (2014) introduce a dynamic 

pricing model with stochastic batch demand. They assume customers have a certain batch size they want 

to purchase and request exactly and only this batch size from the firm. The firm then quotes a price and 

customers either buy the batch or leave the shop without purchasing anything. The authors show 

optimality conditions and prove monotonic properties of optimal policy and value function. However, 

their setting does not accommodate nonlinear pricing as customers exhibit inflexibility in their purchase 

quantities (such as a family buying flight tickets for their vacation), rendering firms unable to influence 

these quantities through the application of appropriate nonlinear batch prices. In our study, we presume 

customers to be flexible concerning batch sizes, as is common in retail scenarios. Instead of specifying 

a particular batch size, customers observe quoted nonlinear prices for various batch sizes and select the 

one that maximizes their utility. This flexibility introduces complexity to the optimization model, as 

firms must decide on several prices simultaneously while anticipating a broader range of potential 

customer reactions.  

There are currently only two other research articles that consider stochastic flexible multiunit demand 

that can be influenced by nonlinear dynamic pricing: Gallego et al. (2020) and Schur (2023). Gallego et 

al. (2020) consider three dynamic pricing models: nonlinear, linear, and block pricing. They consider 

utility maximization choice models where customers are characterized by one single parameter. This 

parameter cannot be observed by the firm and is modeled as random variable. The authors give 

optimality conditions for their nonlinear dynamic pricing model and show structural properties like the 

monotonicity in time and inventory. Their work is related to this paper in the following way: Our 

scenarios where a firm can observe one of two choice parameters is an extension to a special case of 

their nonlinear pricing model. The key distinction in our approach lies in our customer choice model, 

where customers are characterized by two parameters: one reflecting the product's attractiveness and 

another indicating the inclination to purchase multiple units. This allows for nuanced variations among 

customers. For instance, a parent may value diapers more than a childless individual, and a family might 

be more prone to buying several packs of toilet paper compared to someone living alone. Schur (2023) 

considers the same customer choice model as we do, but without the possibility to (partially) observe 

customers’ private information. In the absence of such information, the optimization model becomes 

analytically intractable, leading Schur (2023) to develop three heuristics. These heuristics, utilizing fluid 

approximation, are designed to be asymptotically optimal. In our setting, where we assume partial 

observation of current customer information, we encounter distinct yet related optimization problems 

that can be solved to optimality (numerically). Additionally, we demonstrate that the well-known 

monotonicity in time and inventory persists in our scenario. Lastly, our simulation study explores the 
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value of knowing customers' private information, contributing to the understanding of the situational 

and contextual value of different types of information. 

Multiproduct dynamic pricing is another field in the domain of dynamic pricing that emerged more and 

more in recent years (see for a review, e.g., Chen & Chen, 2015). By defining batches of a single product 

as several different products, we can draw a parallel between multiproduct and multiunit dynamic 

pricing. In multiproduct dynamic pricing the products often are substitutes and an upcoming customer 

can pick at most one of these products. Customers’ demand is stochastic and the firm is facing a finite 

selling horizon with scarce product-dependent inventory (see, e.g., Zhang & Cooper, 2009, Dong et al., 

2009, and Akçay et al., 2010). The main difference between multiunit (i.e., our work) and these 

multiproduct dynamic pricing models is the inventory structure. Whereas every product has its own 

inventory in multiproduct dynamic pricing, every batch (“product”) exploits the same inventory (but in 

another quantity) in multiunit dynamic pricing. One exception to the product-specific inventory setting 

is Maglaras and Meissner (2006). They analyze a setting where every product consumes one unit of the 

same resource. This assumption leads to different pricing dynamics when compared to our setting, where 

each product has varying resource consumption based on batch size. Consequently, in our context, each 

batch price reacts differently to changes in dynamic scarcity, unlike their setting where all products 

equally respond to the dynamic scarcity of the common resource. Maglaras and Meissner (2006) show 

that dynamic pricing and capacity control can be reduced to a common formulation. Instead of 

concentrating on dynamic pricing or capacity control, the firm finds optimal decisions by controlling 

the consumption rate of every product regarding resource capacity.  

In our literature review, it becomes evident that research on nonlinear dynamic pricing is exceptionally 

limited, with only two notable exceptions: Gallego et al. (2020) and Schur (2023). However, these works 

have distinctive characteristics that set them apart. Gallego et al. (2020) focuses on a model where 

customer behavior is characterized by a single (random) parameter, whereas our approach involves two 

(random) parameters. This enables us to capture a more individualized customer choice behavior and 

introduces additional uncertainty into the optimization problem. On the contrary, Schur (2023) employ 

the same customer choice model as we do. However, different from our setting, they cannot observe 

customers’ private information. With these observations, we (numerically) solve the optimization model 

to optimality and determine the value of information in a simulation study. Notably, other works in the 

field diverge significantly in at least one critical assumption, leading them to analyze distinct settings. 

In many cases, these works do not consider customers with flexible multiunit demand, and consequently, 

do not explore the application of nonlinear pricing schemes to influence stochastic purchase quantities.  

3 Problem definition 
After introducing general setting and notation in Section 3.1, we present the customer choice model in 

Section 3.2. Building on this, we finally introduce the optimization model in Section 3.3. 
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3.1 General setting and notation 

We introduce the following framework to combine nonlinear and dynamic pricing: A monopolistic firm 

sells a single product with fixed stock � over a finite selling horizon with � periods. The selling horizon 

is indexed backwards in time, i.e., periods � and 0 mark the beginning and the end, respectively. We 

assume that exactly one customer arrives in each period � =  �, � − 1, … , 1 and is interested in buying 

one or more units of the product depending on the batch prices the firm is quoting. The capacity of the 

product is nonreplenishable and any capacity left at the end of the selling horizon (� = 0) is worthless 

to the firm. At any point in time �, the firm decides on batch prices � = (��, ��, … , ��)� based on 

remaining capacity � ≤ � and expectations of future demand. Thereby, the remaining capacity � defines 

the maximal possible batch size � that could be offered. Each �� represents the price a customer must 

pay for a batch of � units. The firm’s goal is to set the prices that maximize overall revenue, taking into 

account future demand and customer behavior. Arriving customers react on quoted batch prices and 

decide on the batch size to purchase, with ��(�) denoting the probability that an arriving customer 

chooses to buy � units. In this case, the firm immediately earns �� in revenue and product’s capacity is 

lowered by �. Throughout the remainder of this paper, to simplify our notation, we adopt the convention 

that �� = 0. 

3.2 Customer Choice Model 

In our setting, customers face several options (i.e., batch sizes, including also a batch of zero) and pick 

exactly one of these. We assume that customers have a personal (unknown to the firm) evaluation for 

each option and this evaluation can be expressed monetarily via customers’ willingness-to-pay. The 

utility, representing the difference between customers' willingness-to-pay and the price, determines the 

choice, with customers opting for the option that yields the highest utility. This model is commonly 

employed in economic and pricing literature as it captures customers heterogeneity regarding their 

preferences (via personal willingness-to-pay) and firm’s influence on customers’ decision (via price). 

Moreover, it relies on a sound theoretical groundwork, as it aligns with economic principles and the 

rationale that individuals make decisions based on perceived value and cost considerations. Specifically, 

if customers face multiple options rather than a binary decision (such as purchasing or not), this model 

is often applied (see, e.g., Braden and Oren (1994) with their nonlinear (static) pricing setting, and Akçay 

et al. (2010) with their multiproduct dynamic pricing setting).  

Customers’ willingness-to-pay �� for a batch of size � is private information and unknown to the firm. 

This makes �� a random variable and a proper model is needed to reflect customers’ preferences. In 

literature, a common assumption is that marginal willingness-to-pay, i.e., ���� − ��, is non-negative and 

decreasing (see, e.g., Baucells & Sarin, 2007, Goldman et al., 1984, Iyengar & Jedidi, 2012, and Gallego 

et al., 2020). This assumption translates to: “An additional unit is never bad, but it is less appreciated 

than the previous one.” There are several methods to model random willingness-to-pay in settings where 
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customers buy in batches. The model we apply is based on a formulation of Iyengar and Jedidi (2012) 

and was also applied by Schur (2023). Iyengar and Jedidi (2012) introduce a willingness-to-pay function 

that depends on known parameters. Uncertainty regarding customers’ behavior is then added with the 

help of an error term. Schur (2023) adapt this willingness-to-pay function. However, instead of using 

known parameters and adding randomness via an error term, the parameters itself are assumed to be 

private information, and thus, depicted by random variables. We follow the latter approach and define 

the willingness-to-pay �� for a batch size of � by: 

 �� = � ⋅ ∑ (�)����
���     for � = 1, … , �, (1) 

with independent continuous random variables � and �. We denote the corresponding density functions 

by �� and ��. Likewise, the cumulative distribution functions are given by �� and ��. We assume the 

support of both density functions is [0, 1]. Furthermore, we make an assumption regarding the 

continuous failure rates of both random variables, � and �, defined over the interval (0, 1] by ℎ�(�) =
��(�)

����(�) and ℎ�(�) = ��(�)
����(�), respectively. We assume that these failure rates are increasing in �. This 

assumption ensures the existence of a unique solution to our optimization problem, as evidenced by the 

proof of Propositions 1 and 5. This is consistent with common practices in the standard literature, as 

random variables with increasing failure rates have an increasing generalized failure rate (see Lariviere, 

2006). It aligns with one of the three standard assumptions mentioned in Ziya et al. (2004). Furthermore, 

it is compatible with numerous probability distributions, including but not limited to the uniform, 

triangular, normal, exponential, Weibull, Gumbel, gamma distributions, and their truncated variants 

(some of them with restrictions regarding parameter choice) (see Banciu & Mirchandani, 2013). 

By restricting � on [0, 1], we assure that marginal willingness-to-pay, i.e., ���� − �� = � ⋅ ��, is non-

negative and decreases in quantity � (given � ≥ 0). Thereby, this model covers the common assumption 

regarding customers’ preferences that was stated earlier in this section. Restricting � on [0, 1] is only a 

matter of scaling and normalizes marginal willingness-to-pay. The interpretation of the random 

variables, � and �, is the following: As � equals �� = � ⋅ ∑ (�)��
��� = � and influences �� = � ⋅

�∑ (�)����
��� �, � ≥ 2, in a linear manner, we can interpret it as attractiveness of the product to the 

customer. We call this parameter base willingness-to-pay. In contrast, the consumption indicator � has 

no influence on �� = �, but depicts the rate at which marginal willingness-to-pay is diminishing in �. 

This can be observed by ���� − �� = � ⋅ �� = � ⋅ �� ⋅ ����� = � ⋅ ��� − �����. We can interpret � as 

customers’ willingness to stockpile or consume.  

The following figure provides an illustrative representation of willingness-to-pay curves for three 

specific customers, each characterized by unique realizations of random variables � and �, denoted as 

� and �, respectively. 
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In this example, customer 1 (dashed line) shares the same base willingness-to-pay (� = 0.8) with 

customer 2 (dotted line), and the same consumption indicator (� = 0.8) with customer 3 (solid line). 

Consequently, customers 1 and 2 exhibit identical willingness-to-pay values for a batch size of 1, 

implying they have a similar valuation of the product. However, a notable distinction arises when we 

examine the curves further. While the solid curve steadily increases until � = 10, the dotted curve 

reaches a relatively constant level at � = 4. This divergence stems from the fact that customer 1, with a 

consumption indicator twice as high, is significantly more interested in purchasing larger batches 

compared to customer 2. 

Comparing customer 1 and 3, we observe that the solid line consistently falls exactly between the dashed 

line and zero. This is a direct consequence of both customers having the same consumption indicator, 

but with customer 3 having only half the base willingness-to-pay of customer 1. As a result, customer 1 

is willing to pay twice as much as customer 3, indicating a substantially higher appreciation for the 

product. 

 

Figure 1: Three exemplary willingness-to-pay curves for � ≤ �� 

From a theoretical perspective, if the firm were given the choice among the three customers, it would 

naturally prefer to serve customer 1, as it can charge the highest prices for each batch size. However, 

when deciding between customer 2 and 3, the choice is less clear-cut. When facing a stock shortage, 

serving customer 2 might be preferable, while in situations with ample stock availability, customer 3 

could be the better option. 

Briefly leaving the example behind us allows for the definition of customers’ utility. The utility ��(�) 

for purchasing � units is the difference between their willingness-to-pay �� and price ��: 

 ��(�) = �� − ��    for � = 1, … , �. (2) 
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Customers act rational and choose the option that yields the highest utility. Thus, they purchase � units 

if and only if ��(�) = max
���,…,�

���(�)� with ��(�) = 0 denoting the no-purchase option.  

Resuming the previous example (Figure 1), we introduce an arbitrary price vector (as shown by the red 

line in Figure 2, left side). It's important to highlight that while we use a linear pricing scheme in this 

particular illustration, our model is not restricted to linear pricing and explicitly accommodates non-

linear pricing structures. The application of equation (2) results in the generation of three distinct utility 

curves (depicted in. Figure 2, right side), one for each customer.  

Upon close examination, we can observe that customer 1 (dashed line) has maximal utility at � = 3, 

customer 2 (dotted line) at � = 1, and customer 3 (solid line) at � = 0. In a scenario where these three 

customers collectively constitute the entire market and each customer’s arrival is equally likely, the firm 

would have the following probabilities of selling units with this price vector: 0 units, 1 unit, or 3 units, 

each with a probability of �
�
.  

 

Figure 2: Example of Figure 1 with added price curve (left) and resulting utilities (right) 

Given our assumption that � and � are continuous random variables, we find ourselves in a realm with 

an infinite number of willingness-to-pay curves, each representing a specific customer. In this expansive 

landscape, it is impractical to individually assess every customer to pinpoint where their maximum 

utility lies, as we did in the example. Instead, when presented with a specific price vector �, we want to 

determine which utility curves, described as combinations of � and �, have their maximum at batch size 

�. In essence, for any given �, we seek all (�, �) pairs for which ��(�) = max
���,…,�

���(�)�. According to 

equation (2), this condition holds for all (�, �) that satisfy:  

 � ⋅ ∑ �����
��� − �� ≥ � ⋅ ∑ �����

��� − ��   for � = 1, … , � and 

 � ⋅ ∑ �����
��� − �� ≥ 0.     (3) 
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To compute the probability that the next utility curve we encounter attains its maximum at �, we must 

calculate the probability that (�, �) meets these conditions. This can be achieved using the density 

functions �� and �� in combination with an indicator function 1
���(�)� ���

���,…,�
���(�)��

(�, �). This indicator 

function equals 1 when the condition is met and 0 otherwise. Notably, this probability is technically 

equivalent to the probability ��(�) of selling � units for a given price � and we can express it as: 

 ��(�) = ∫ ∫ ��(�)��(�)1
���(�)� ���

���,…,�
���(�)��

(�, �) ���
� ���

�    for � = 1, … , �. (4) 

3.3 Dynamic programming formulation 

A firm maximizes expected revenue over the whole selling horizon by solving a dynamic optimization 

problem. Thereby, it searches for the optimal batch prices ��, 1 ≤ � ≤ �, to offer at every time � with 

remaining capacity �. The maximal number of purchasable units equals the remaining capacity in every 

state (�, �). To take the varying character of remaining capacity into account, we define a state-

dependent action space ℛ� = �� ∈ ℝ�: �� ≥ 0, � = 1, … , �� with ℛ� = ∅. Action space ℛ� defines the 

set of feasible solutions to our maximization problem. By taking the remaining capacity � into account, 

it makes sure that only available batch sizes � ≤ � are offered. The dynamic problem is given by: 

 ��(�) = max
�∈ℛ�

�∑ ��(�) ⋅ ��� + ����(� − �)��
��� + �1 − ∑ ��(�)�

��� � ⋅ ����(�)�  (5) 

where ��(�) denotes the optimal expected revenue-to-go from period � onwards with remaining capacity 

�. The boundary conditions are ��(�) = 0 for � ≥ 0 and ��(0) = 0 for � ≥ 0. 

In every state, one out of � + 1 random events occurs: A customer purchases 0 ≤ � ≤ � units at a price 

of �� with probability ��(�). Additionally, the firm can expect future revenues from remaining capacity 

� − � and time � − 1. We denote the optimal batch prices selected in a state (�, �) by ��(�) ∈ ℛ�. 

An alternative formulation of (5) focuses on opportunity costs regarding selling � units, i.e. 

 Δ���(�) = ��(�) − ��(� − �)   for � = 1, … , �, (6) 

and is given by 

 ��(�) = max
�∈ℛ�

�∑ ��(�) ⋅ ��� − Δ�����(�)��
��� � + ����(�).   (7) 

Thus, the goal to maximize expected revenues can be achieved by maximizing additional revenue gains 

that are realized by selling up to � units in period � instead of retaining the capacity for later customers. 

This formulation offers several advantages over (5). The first and most apparent advantage is the 

immediate insight that optimal prices should surpass opportunity costs. Failing to do so would result in 

no gain in expected revenue by selling, or worse, it could even lead to a net loss in overall expected 

revenue. Another advantage becomes evident in later sections as we establish key properties based on 
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formulation (7). These properties are crucial in our pursuit to find the optimal solution of our 

optimization problem. Lastly, it underscores the significance of opportunity costs, which constitute the 

sole state-dependent component and are the primary driver behind the dynamic changes in optimal prices 

over time. 

4 Different types of observable information 
In this section, we consider different degrees of observability regarding next customer’s private 

information, i.e. base willingness-to-pay � and consumption indicator �. In three subsections, we 

assume that the firm knows at customer’s arrival the exact value of base willingness-to-pay, 

consumption indicator, or both parameters, respectively. Each of these subsections shows the adapted 

problem formulation, structural properties, and optimal solution (or at least a sufficient condition for 

optimality). 

4.1 Observable base willingness-to-pay 

We now consider the case where a firm can observe the base willingness-to-pay of the next customer in 

line, i.e. the realization � of random variable � becomes known at the moment the firm decides upon 

the next batch prices. Consumption indicator � remains stochastic. Thereby, we eliminate some but not 

all of uncertainty regarding customers’ behavior.  

4.1.1. Customer choice and model formulation 

Selling at least one unit of the product is now a deterministic occurrence. Notably, for �� < �, we know 

for certain that a customer has a higher utility for purchasing one unit than for purchasing nothing at all 

(��(�) = � − �� is deterministic and positive). However, we still face uncertainty regarding the precise 

number of units purchased, as we do not know if there are ��(�) values exceeding ��(�).  

A customer is indifferent between purchasing zero and one unit of the product when �� = �. As a 

tiebreaker, a firm could quote a price that is slightly above or below � (�� and ��, respectively), 

depending on which outcome would be more suitable. Taking these two strategies explicitly into account 

would result in increased complexity of notation without adding to understandability. In most instances, 

a firm prefers customers to purchase at price �. Consequently, we will assume � to act as �� without 

further mention. However, there are situations where the firm may not want to sell at � (e.g., if � is too 

low). In such cases, we will explicitly indicate that the firm employs ��. Moreover, we ignore the case 

where a customer might have � = 0. This case almost surely does not occur (recall that � is 

continuously distributed), and even if it were to occur, it would have no impact. For a customer with a 

willingness-to-pay of zero for every batch size (as per equation. (1)), there would be no price at which 

the customer desires to buy while the firm wishes to sell simultaneously. Consequently, the optimal 

solution in this case would be not to sell anything to that customer. 
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Observing realization � has the advantage that we can formulate necessary conditions for a customer to 

purchase � units:  

a) ∑ �����
��� ≥ ��

�
,  

b) ∑ �����
��� ≥ �����

�
 for all � ∈ {1, 2, … , � − 1}, and  

c) ∑ �����
��� ≤ �����

�
 for all � ∈ {� + 1, � + 2, … , �}.  

Conditions a) – c) arise from (3) with � instead of � and by separating all known variables, i.e., decision 

variable � and realization �, from random variable �. These conditions ensure that purchasing � units 

yields at least the same utility for customers as purchasing nothing (condition a)), purchasing less than 

� units (condition b)), and purchasing more than � units (condition c)). 

Based on these conditions, there are several ways to eliminate demand for � units: 

 Picking batch price �� > � ⋅ � makes it impossible to fulfill condition a) for any � ∈ [0,1]. 

 If �� > �� for any � > �, then there is no � ∈ [0,1] that satisfies condition c). 

 Picking �� such that ��������

�
�

�
��� > 1 makes it impossible to fulfill condition b) for any � ∈

[0,1]. 

 With batch prices ����, ��, and ���� such that ��������

�
�

�
� < ��������

�
�

�
���, there is no � ∈ [0,1] 

such that ���� ≥ �������

�
 and �� ≤ �������

�
 simultaneously (conditions b) and c) with � = � − 1 

and � = � + 1, respectively).  

In a scenario characterized by limited capacity, it becomes crucial to possess the capability to eliminate 

demand for any batch size �. There are two primary reasons why we seek this capability: firstly, we 

might encounter a situation where our capacity � is insufficient to fulfill an order of � units (i.e., � < �), 

and secondly, it may be more financially advantageous to reserve capacity for potential future customers. 

The latter circumstance arises when we are currently serving a customer with an exceptionally low 

willingness-to-pay, which is indicated by an exceedingly low value of �. We can establish a formal 

criterion for � being too low by referring to equation (7). This equation reveals that �� should exceed 

Δ�����(�) to increase overall expected revenue. The maximum possible willingness-to-pay for � units 

by a customer is given by � ⋅ � (as per equation (1) with � = 1). When dealing with a customer whose 

� falls below ������(�)
�

, there is no viable way to sell � units without incurring a loss in overall expected 

revenue. In such cases, the firm’s preference is not to sell � units to this customer, and we must ensure 

that at least one � is feasible such that ��(�) = 0.  

Referring back to the previous points, we have ascertained that there exist numerous potential choices 

of �� to eliminate demand for � units. Given that the primary goal of these �� is to abstain from selling, it 
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becomes immaterial which specific �� is employed for this purpose. These observations prompt us to 

exclude the majority, though not all, of these alternatives from the action space ℛ�. In the ensuing 

lemma, we define a refined action space that assumes a crucial role in this section. This set is denoted 

as ℛ�(�) and its elements are referred to as relevant prices, as we have removed only those prices 

deemed irrelevant.  

Lemma 1  Relevant prices � are given by  

ℛ�(�) = �� ∈ ℝ�: 0 ≤ �� ≤ ��, and 0 ≤ �
�� − ����

�
�

�
���

≤ �
���� − ��

�
�

�
�

≤ 1  for 2 ≤ � ≤ � − 1�. 

Proof: Firstly, it is essential to recognize that the definition of ℛ�(�) is derived exclusively by 

excluding any price vector that satisfies one of the conditions outlined in the bullet points above. 

Specifically, the first and third bullet points correspond to �� ≤ �� and ��������

�
�

�
��� ≤ 1, the second to 

0 ≤ �� and 0 ≤ ��������

�
�

�
���, and the fourth to ��������

�
�

�
��� ≤ ��������

�
�

�
� .   

The fundamental concept behind this proof is straightforward: We show that for any excluded price 

vector, there exists a price vector � ∈ ℛ�(�) that results in the same customer decisions and earned 

revenues. W.l.o.g., let us assume that an excluded price vector satisfies any of the bullet points for some 

� (if there are multiple instances, we iteratively apply the following steps). The implication is that 

demand for � units is eliminated. By substituting a certain value for ��, we can ensure that demand for � 

units is still eliminated, while the resulting price vector belongs to ℛ�(�).  

Considering the bullet points mentioned earlier, we want to shortly discuss what happens if we replace 

the inequality of these conditions with equality: Thereby, there is at most one � ∈ [0,1] such that 

conditions a) to c) are fulfilled. As we assume � to be a continuously distributed random variable, the 

probability of � being exactly this value is zero. Thus, we can eliminate demand almost surely by 

choosing �� such that �� = � ⋅ � (first bullet point with “=”), �� = �� (second bullet point with “=”), 

��������

�
�

�
��� = 1 (third bullet point with “=”), or ��������

�
�

�
� = ��������

�
�

�
��� (fourth bullet point with 

“=”). Please note that the definition of ℛ�(�) always covers at least one of these four alternatives. This 

is sufficient for the purpose of maximizing expected revenue, and we can exclude all the cases mentioned 

in the bullet points without limiting possibilities for our optimization problem.    □ 

In equation (1), we can observe that ��������

�
�

�
��� represents the lowest realization � ∈ [0,1], for which a 

customer has nonnegative marginal utility when purchasing the �th unit (� ≥ 2): ��(�) − ����(�) =

��� − ��� − ����� − ����� = ��� − ����� − ��� − ����� = � ⋅ ���� − ��� − ����� ≥ 0 ⇔ � ≥

��������

�
�

�
���. This threshold is crucial, and we define 
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 ����� − ����� = ��������

�
�

�
���   for � = 2, … , �  (8) 

Let us discuss the implication of this threshold in a short example: Assume we are dealing with a 

customer with a specific observable base willingness-to-pay (e.g., � = 0.8) and an unobservable 

consumption indicator � with realizations � ∈ [0, 1]. The firm quotes an arbitrary price vector � with 

� ∈ ℛ�(�) (e.g., the same price vector as depicted in Figure 2). Now, we can calculate for every batch 

size � the marginal utility ��(�) − ����(�). As the marginal utility depends on random variable �, we 

portray it as function of every possible realization � ∈ [0, 1], i.e., � ⟼ � ⋅ ���� − ��� − �����. To provide 

a clear illustration in Figure 3, we only show the marginal utilities for � ≤ 3. 

 

Figure 3: Exemplary marginal utility for � ≤ � depending on realization � 

The marginal utility for the first unit is positive for all � ∈ [0, 1]. Therefore, in this example, every 

customer with � = 0.8 prefers purchasing one unit over purchasing nothing at all. The marginal utility 

for the second and third unit becomes positive at ��(�� − ��) and ��(�� − ��), respectively. Customers 

with � ≥ ��(�� − ��) and � ≥ ��(�� − ��) can increase their utility by purchasing the second and third 

unit, respectively. We can now partition the interval [0, 1] into �0, ��(�� − ��)�, ���(�� − ��), ��(�� −

��)�, and ���(�� − ��), 1�. Customers with � = ����� − ����� almost surely do not arrive (remember, � is 

continuously distributed). Thus, it is irrelevant which of the adjacent intervals contains them. For 

presentation purposes, we decided to include them in both and work with closed intervals. Customers 

belonging to the first interval (based on their personal �) have positive marginal utility for purchasing 

one unit. They also have negative marginal utility for purchasing the second and third unit. 

Consequently, these customers attain their maximal utility by purchasing one unit. Analogously, 

customers belonging to the second and third interval decide to purchase two and three units, respectively. 

We can generalize these considerations and partition [0, 1] into �0, ��(�� − ��)�, ������ −

�����, ��������� − ���� for � = 2, 3, … , � − 1, and ���(�� − ����), 1�. For � ∈ ℛ�(�), by definition, 

0 0.2 0.4 0.6 0.8 1
realization  l of random variable 

-0.6

-0.4

-0.2

0

0.2
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����� − ����� is increasing in �. Hence, these intervals are well-defined, cover the entire interval [0, 1], 

and are ordered such that ������ − �����, ��������� − ���� contains lower values than ���(�� −

����), ����(���� − ��)� if � < �. Moreover, we can conclude that customers belonging to ������ −

�����, ��������� − ���� decide to purchase � units (as they have positive marginal utilities for � ≤ � and 

negative marginal utilities for � > �). Building on this, we can easily calculate the probability a customer 

purchase � units (1 < � < �) by calculating the probability a customer belongs to ������ −

�����, ��������� − ����: 

ℙ�� ∈ ������ − �����, ��������� − ����� = �� ���������� − ���� − �� ������ − ������. 

This remains true for � = � by replacing ����(���� − ��) with 1. However, the � = 1 case is somewhat 

distinct: As utility for purchasing the first unit is independent of �, the marginal utility is constant. With 

�� ≤ �� (one of the conditions that defines ℛ�(�)), it is either positive (�� < �) or zero (�� = � and 

�� = ��). In the latter case, customers are indifferent between purchasing and not purchasing. We 

emphasize with �� = � and �� = �� which of these equally viable options customers choose. As � and 

�� are the same value, the resulting intervals, i.e., �0, ��(�� − ��)�, are identical in the sense that they 

cover the same area. And yet, they differ in meaning. One represents all customers that purchase exactly 

one unit (resulting from �� = �), the other represents all customers that purchase nothing at all (resulting 

from �� = ��). Please note that this ambiguity has no impact on customers that belong to 

������ − �����, ��������� − ���� with � ≥ 2. These customers have a zero valued marginal utility for the 

first unit, a positive marginal utility for each �th unit with � ≤ �, and negative marginal utilities for every 

other unit. Thus, they still attain their maximal utility by purchasing � units. 

These considerations were enabled by restricting the action space to ℛ�(�). Only with this restriction, 

the intervals are guaranteed to be correctly ordered which, in turn, allows us to simplify the formulation 

of the selling probability ��(�|�) for a batch of size �: 

 ��(�|�) = �
�� ���������� − ���� − �� ������ − ������ for 1 ≤ � ≤ � − 1

1 − �� ���(�� − ����)� for � = �
  (9) 

 

with ��(�� − ��) = ��(�� − ��) ⋅ 1{�����} to properly reflect the ambiguous behavior of customers 

belonging to �0, ��(�� − ��)�. 

The optimization problem with observable base willingness-to-pay is given by 

 ��
�(�) = ∫ max

�∈ℛ�(�)
�∑ ��(�|�) ⋅ ��� − Δ�����

� (�)��
��� � ��(�) ���

� + ����
� (�)  (10) 
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with boundary conditions ��
�(�) = 0 for � ≥ 0 and ��

�(0) = 0 for � ≥ 0. By definition of ��(�|�), �� 

influences the probability of three possible outcomes: selling � − 1, �, and � + 1 units. This 

interconnection thwarts maximizing ∑ ��(�|�) ⋅ ��� − Δ�����
� (�)��

���  separately. We can circumvent 

this obstacle by defining Δ�� = �� − ���� for � ≤ � (�� = 0) and reformulating ∑ ��(�|�) ⋅�
���

��� − Δ�����
� (�)� = ∑ ��(�|�) ⋅ �∑ Δ�� − Δ�����

� (� + 1 − �)�
��� � = ∑ �1 − �� ����Δ����� ⋅�

���
�
���

�Δ�� − Δ�����
� (� + 1 − �)� for � ∈ ℛ�(�). Moreover, with (8), we write ℛ�(�) = �� ∈ ℝ�: 0 ≤ Δ�� ≤

��, and 0 ≤ ���Δ��� ≤ �����Δ����� ≤ 1  for 2 ≤ � ≤ � − 1�. The only remaining connection between 

marginal unit prices Δ�� is given by the imposed order ���Δ��� ≤ �����Δ�����  for 2 ≤ � ≤ � − 1. When 

defining ���Δ��� in (8), we showed that this is the threshold between negative (� < ���Δ���) and positive 

(� > ���Δ���) marginal utility for purchasing the �th unit. So, in conclusion, this order ensures a pricing 

scheme where customers only consider buying the � + 1th unit if they also buy the �th.  

Currently, this order, imposed by conditions ���Δ��� ≤ �����Δ�����, 2 ≤ � ≤ � − 1, is preventing us 

from optimizing every decision variable independently. By removing these conditions, we formulate an 

optimization problem that is entirely separable in each decision variable and serves as an upper bound 

to (10): 

 ∑ max
���∈[�,�]

��1 − �� ����Δ����� ⋅ �Δ�� − Δ�����
� (� + 1 − �)���

��� .  (11) 

The roadmap for the remaining section is as follows: We first determine the solution of upper bound 

problem (11), show that under certain conditions this solution is also the solution of (10) resulting in the 

same expected revenue, and finally show by induction that these conditions are indeed met. 

4.1.2. Solution and structural properties 

For every �, we check if we can economically sell the �th unit. We use the term “economic selling” to 

refer to selling an additional unit at a price that covers at least the lost expected revenue of the 

additionally sold capacity (opportunity cost), i.e. Δ�� ≥ Δ�����
� (� − � + 1). Whenever Δ�����

� (� + 1 −

�) is exceeding �, we cannot economically sell the �th unit and choose to eliminate demand for it, i.e. 

we pick Δ�� = �. 

Corollary 1  If ����
� (⋅) is increasing and concave, ��,�(�) = ���

���,…,�
 {�: ������

� (� − � + 1) < �} 

denotes the highest additional unit that can be sold economically. It holds that {�: ������
� (� − � + 1) <

�} = �1, 2, … , ��,�(�)�. 

Proof: As ����
� (⋅) is concave, ������

� (� − � + 1) is increasing in �. Thus, there is �̂ ∈ {1,2, … , �} with 

������
� (� − � + 1) < � ⇔ � ≤ �̂.           □ 
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By definition, it holds that Δ�����
� �� − ��,�(�) + 1� < � and Δ�����

� �� − ���,�(�) + 1� + 1� ≥ �. 

Consequently, it also holds that Δ�����
� �(� − 1) − ���,�(�) − 1� − 1� < � and Δ�����

� �(� − 1) −

��,�(�) + 1� ≥ � as well as Δ�����
� �(� + 1) − ���,�(�) + 1� − 1� < � and Δ�����

� �(� + 1) −

���,�(�) + 2� + 1� ≥ �. This observation leads to the following remark.  

Remark 1  It holds that ��,���(�) + 1 = ��,�(�) = ��,���(�) − 1. 

The solution to max
���∈[�,�]

��1 − �� ���(Δ��)�� ⋅ �Δ�� − Δ�����
� (�)�� is Δ�� = � (�� if Δ�����

� (�) ≥ �). 

However, for every other �, the solution is less apparent.  

In the proof of Proposition 1, we show that there exists exactly one solution Δ�� to (11). We determine 

this solution with the help of the optimal customer threshold ��, which is (implicitly) defined in 

Proposition 1. There, we observe that the optimal solution depends on realization � and opportunity 

costs Δ�����
� (� + 1 − �).  

Proposition 1  In every state (�, �) and for every � ∈ [0,1], there is a unique optimal solution 

Δ��,�(�|�), � ≤ �, for (11): 

 If Δ�����
� (� + 1 − �) ≥ �, Δ��,�(�|�) = �� with ��(�) = 1. 

 If Δ�����
� (� + 1 − �) ∈ [0, �), Δ��,�(�|�) = � with ��(�) = 0 for � = 1 and Δ��,�(�|�) = � ⋅

���(�)�
���

 with ��(�) implicitly defined by � ⋅ ��
���(�) ⋅ ���(�) − ���

�����(�)�
� = Δ�����

� (� +

1 − �) for � ≥ 2. 

Proof: We have already established that Δ��,�(�|�) = � when Δ�����
� (� + 1 − �) ∈ (0, �). Hence, our 

focus will be on � ≥ 2 in the subsequent discussion.   

In this proof, we aim to achieve two objectives. First, we intend to derive the implicit definition and 

argue that there is at least one solution meeting this criterion. Second, we aim to prove that there could 

only be one solution meeting this criterion. To accomplish the first goal, we will formulate the first-

order condition and examine the values of the first derivative at the interval boundaries. The second goal 

will be secured by establishing the second derivative and demonstrating its negativity for every solution 

that satisfies the first-order condition. With the continuity of the first derivative, this is sufficient to 

conclude that there is exactly one point where the first derivative equals zero. Hence, there is exactly 

one solution meeting the first-order condition and maximizing the optimization problem.  

We commence with a reformulation of the optimization problem, a convenient step to simplify the 

second derivative.   

There are different approaches to tackle this optimization problem: we can try to find the optimal 

marginal price Δ��, the optimal customer threshold ��, or the optimal probability � = 1 − ������. As 
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���Δ��� = ����

�
�

�
��� is bijective on [0, �], and the distribution function is bijective on its support [0, 1], 

there is a unique mapping between Δ��, ��, and �. This enables us to treat each of these variables as a 

decision variable and use the mapping to calculate the other two.   

In this proof, it is more convenient to focus on � as our decision variable. Thereby, we do not have to 

deal with (varying) opportunity costs in the second derivative. We reformulate our optimization problem 

with Δ�� = � ⋅ �������, � = 1 − ������, and ��
�� being the inverse to ��: 

max
���∈[�,�]

��1 − �� ��
Δ��

�
�

�
���

�� ⋅ �Δ�� − Δ�����
� (� + 1 − �)��

= max
��∈[�,�]

��1 − ������� ⋅ �� ⋅ ������� − Δ�����
� (� + 1 − �)��

= max
�∈[�,�]

�� ⋅ �� ⋅ ���
��(1 − �)�

���
− Δ�����

� (� + 1 − �)��. 

We can now approach our first goal. The optimal solution has to meet the first-order condition: 

�
��

� ⋅ �� ⋅ ���
��(1 − �)�

���
− Δ�����

� (� + 1 − �)�

= � ⋅ ���
��(1 − �)�

���
− Δ�����

� (� + 1 − �) − � ⋅ � ⋅ (� − 1) ⋅ ���
��(1 − �)�

���

⋅
1

�� ���
��(1 − �)�

= 0. 

This condition is well-defined as �� > 0 on the distribution’s support [0, 1]. The existence of a solution 

is ensured by the continuity of the first derivative as well as the fact that it is non-negative for � = 1, 

and positive for � = 0 (remember that � > Δ�����
� (� + 1 − �)).   

With �� = ��
��(1 − �) and the definition of the failure rate, we can reformulate the first-order condition 

to 

� ⋅ ������� − Δ�����
� (� + 1 − �) − � ⋅ (� − 1) ⋅ ������� ⋅

1
ℎ�����

= 0. 

To achieve our second objective, we derive the second derivative on this formulation and write ��(�) to 

emphasize that �� depends on � (our decision variable in this proof). Subsequently, we demonstrate that 

the second derivative is negative for every � that satisfies the first-order condition. With the continuity 

of the first derivative, this is sufficient to establish the uniqueness of such a �: 
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��

��� � ⋅ �� ⋅ ���
��(1 − �)�

���
− Δ�����

� (� + 1 − �)�

=
�

��
� ⋅ ���(�)�

���
− Δ�����

� (� + 1 − �) − � ⋅ (� − 1) ⋅ ���(�)�
���

⋅
1

ℎ� ���(�)�

= � ⋅ (� − 1) ⋅ ���(�)�
���

���(�) −
(� − 2) ⋅ ℎ� ���(�)� − ��(�) ⋅ ℎ�

� ���(�)�

�ℎ� ���(�)��
� �

⋅
�

��
��(�) 

for � ≥ 3, and  

��

��� � ⋅ �� ⋅ ���
��(1 − �)�

���
− Δ�����

� (� + 1 − �)�

= �� + � ⋅ (� − 1) ⋅
ℎ�

� ���(�)�

�ℎ� ���(�)��
�� ⋅

�
��

��(�) < 0 

for � = 2. With �
��

��(�) < 0 and ℎ�
� ���(�)� ≥ 0, the latter case is trivial. Thus, we will focus on � ≥ 3 

for the remaining part of the proof. Again with �
��

��(�) < 0, we only need to show that ��(�) −

(���)⋅�����(�)����(�)⋅��
� ���(�)�

������(�)��
� > 0 for every � that meets the first-order condition. It holds that 

��(�) −
(� − 2) ⋅ ℎ� ���(�)� − ��(�) ⋅ ℎ�

� ���(�)�

�ℎ� ���(�)��
�

= Δ�����
� (� + 1 − �)�������������

��

+
1

ℎ� ���(�)��������
��

+
��(�) ⋅ ℎ�

� ���(�)�

�ℎ� ���(�)��
�

�����������
��

> 0. 

The equality follows by the first-order condition. Also note that ℎ� is positive on the distribution’s 

support and increasing by assumption.          □ 

Remark 2  For �~�[0, 1] and ������
� (� + 1 − �) = 0, the optimality condition leads to a closed-form 

solution: ���,�(�|�) = � ⋅ ����
�

�
���

, � ≥ 2. 

For now, we have (implicitly) given the solution of upper bound (11). If we can show that this solution 

is a feasible solution to (10), i.e. Δ��,�(�|�) ∈ ℛ�(�), we can immediately conclude that Δ��,�(�|�) 

results in the same expected revenue in (10) and is the unique optimal solution. It holds that Δ��,�(�|�) ∈

ℛ�(�) ⇔ �Δ��,�(�|�) ∈ [0, ��] and ��(�) ≤ ����(�) for 2 ≤ � ≤ � − 1�.  
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In proof of Proposition 1, we have seen that ��(�) < 1 (resulting from � > 0) if Δ�����
� (� + 1 − �) <

� and ��(�) = 1 if Δ�����
� (� + 1 − �) ≥ �. This could lead to contradicting condition ��(�) ≤

����(�) if there is � such that Δ�����
� (� + 1 − �) ≥ � and Δ�����

� (� − �) < �. Therefore, a necessary 

condition for Δ��,�(�|�) ∈ ℛ�(�) is Δ�����
� (� + 1 − �̂) ≥ � ⇒ (Δ�����

� (� + 1 − �) ≥ �   ∀� ≥ �̂). 

This is ensured when ����
� (⋅) is concave, so we will stick with this condition.  

Proposition 2  If ����
� (⋅) is increasing and concave, Δ��,�(�|�) defined by Proposition 1 is the optimal 

solution for (10).  

Proof: We formulated optimization problem (11) by removing conditions ��(�) ≤ ����(�) for 2 ≤ � ≤

� − 1. Therefore, demonstrating that Δ��,�(�|�) satisfies these conditions is sufficient to show 

Proposition 2.  

According to Corollary 1, Δ�����
� (� − � + 1) < � holds for � ≤ ��,�(�), and Δ�����

� (� − � + 1) ≥ � 

holds for � > ��,�(�). Combined with Proposition 1, this implies that ��(�) = 1 for � > ��,�(�), which 

evidently aligns with ��(�) ≤ ����(�). Therefore, in the subsequent discussion, we exclusively focus 

on the case where � ≤ ��,�(�).  

We know from Proposition 1 (and its proof) that 0 = ��(�) ≤ ��(�), and ��(�) such that � ⋅ ��
���(�) ⋅

���(�) − ���
�����(�)�

� = Δ�����
� (� + 1 − �), � ≥ 2.   

Focusing on � ⋅ ���� ⋅ �� − ���
�����

�, we can observe that this formulation is decreasing in � if � − ���
�����

≥

0. As ��(�) − ���
�����(�)�

≥ 0, it holds that 

0 = � ⋅ ��
���(�) ⋅ ���(�) −

� − 1

ℎ� ���(�)�
� − Δ�����

� (� + 1 − �)

> � ⋅ ��
���(�) ⋅ ���(�) −

�

ℎ� ���(�)�
� − Δ�����

� (� + 1 − �)

≥ � ⋅ ��
���(�) ⋅ ���(�) −

�

ℎ� ���(�)�
� − Δ�����

� (� − �), 

� ≥ 2, where the equation follows by Proposition 1, the first inequality by increasing � to � + 1, and the 

last inequality by concavity of ����
� (⋅). The negativity of the last term proves that the optimal solution 

��(�) for selling the �th unit does not satisfy the optimality condition for selling the � + 1th unit. More 

precisely, it proves that the point where this optimality condition is fulfilled, denoted as ����(�), must 

be positioned above ��(�). In simpler terms, ��(�) < ����(�).       □ 
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So far, we have shown Δ��,�(�|�) (implicitly) defined by Proposition 1 is the optimal solution to (10) 

for every � if ����
� (⋅) is increasing and concave. We will show that this condition indeed holds for the 

whole horizon. In the upcoming proof, the optimal expected margin �� for selling the �th unit, and its 

sensitivity to changes in opportunity costs, will play a crucial role. Hence, we introduce ��(�) =

max
���∈[�,�]

��1 − �� ����Δ����� ⋅ �Δ�� − ��� as a function of variable � which represents any opportunity 

costs. This allows us to analyze the impact of varying opportunity costs on the optimal expected margin. 

Lemma 2 outlines certain properties of ��(�) that will prove useful in establishing concavity of ����
� (⋅) 

later in this section. 

Lemma 2  If � ∈ [0, �), it holds that: 

a) ����(�) − ��(�) ≤ 0 

b) ����(�) − ��(�) is increasing in � 

c) ��(�) is decreasing in � 

Proof: We will address a), b), and c) separately, though not in this order. To streamline the proof of b), 

we will employ a formulation derived in c), so we will modify the order accordingly.   

a): The assertion that the optimal expected margin declines with �, i.e., ��(�) ≥ ����(�), is rooted in 

two observations: the suboptimality of the solution of ����(�) for ��(�), and the fact that expected 

margin decreases with � for any � ∈ [0, 1].  

��(�) is the optimal value of max
���∈[�,�]

��1 − �� ����Δ����� ⋅ �Δ�� − ��� = max
��∈[�,�]

��1 − ������� ⋅

�� ⋅ ������� − ��� = �1 − �� ���(�)�� ⋅ �� ⋅ ���(�)�
���

− �� with ��(�) representing the optimal 

solution. As ����(�) (the optimal solution of ����(�)) is suboptimal for ��(�) and 1 − �� �����(�)� ≥

0 as well as ����(�) ≤ 1, it holds that 

��(�) = max
��∈[�,�]

��1 − ������� ⋅ �� ⋅ ������� − ��� ≥ �1 − �� �����(�)�� ⋅ �� ⋅ �����(�)�
���

− ��

≥ �1 − �� �����(�)�� ⋅ �� ⋅ �����(�)�
�

− �� = ����(�) 

c): To prove c), we will derive the first derivative of ��(�) with respect to � and demonstrate its 

nonpositivity.   

Based on its implicit definition � ⋅ ��
���(�) ⋅ ���(�) − ���

�����(�)�
� = �  (refer to Proposition 1), the 

optimal solution ��(�) of ��(�) depends also on �. As we are about to vary �, we highlight this fact by 

writing ��(�) instead of ��(�) (� acts as a parameter in this proof). The same applies for ����(�) and 

����(�). Building the first derivative, we get 
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�
��

��(�) =
�

�� ��1 − �� ���(�)�� ⋅ �� ⋅ ���(�)�
���

− ���

= −�� ���(�)� ⋅
�

��
���(�)� ⋅ �� ⋅ ���(�)�

���
− �� + �1 − �� ���(�)��

⋅ �� ⋅ (� − 1) ⋅ ���(�)�
���

⋅
�

��
���(�)� − 1�

=
�

��
���(�)� ⋅ �� ���(�)� ⋅ �� ⋅ ���(�)�

���
⋅ �

� − 1

ℎ� ���(�)�
− ��(�)� + ��

− �1 − �� ���(�)�� = − �1 − �� ���(�)�� ≤ 0. 

The last equation holds because of the implicit definition of ��(�).  

b): Similarly to c), we aim to calculate the first derivative �
��

�����(�) − ��(�)�. Fortunately, we can 

leverage the first derivative of ��(�) with respect to �. It is important to note that substituting � by � + 1 

does not alter the reasoning in c). Consequently, we find that �
��

����(�) = − �1 − �� �����(�)��. 

Combining the first derivative of ��(�) and ����(�) leads to 

�
��

�����(�) − ��(�)� = �� �����(�)� − �� ���(�)�. 

Recalling the argumentation while developing Proposition 2, we know that ����(�) ≥ ��(�). Hence, we 

can conclude that �
��

�����(�) − ��(�)� ≥ 0.        □ 

Even though we developed Lemma 2 mainly to show the desired concavity of ��
�(⋅), it also brings 

interesting implications with it: The optimal expected margin for selling the �th unit is greater than the 

optimal expected margin for selling the � + 1th unit given both cases result in the same additional 

opportunity costs. With a concave value function ��
�(⋅), we can conclude that selling the � + 1th unit 

results in higher additional opportunity costs and, thus, selling the � + 1th unit definitely leads to a lower 

optimal expected margin than selling the �th unit does. 

Before delving into the proof of the preservation of concavity across periods, let us examine a small 

example. Assume that � and � follow a uniform distribution. We address the optimization problem for 

all states (�, �) with � = 1, 2 and � = 1, … , 5. We start with � = 1, as ��
�(⋅) depends on ��

�(⋅) which in 

turn depends on ��
�(⋅). After the selling horizon, no revenue can be earned, leading to the boundary 

condition ��
�(�) = 0 for � ≥ 0. 

In � = 1, observe that ��
�(�) is (as a constant, not strictly) increasing and concave. Propositions 1 and 

2 allow us to calculate ��
�(�). In addition, with no opportunity costs (Δ���

�(�) = 0), we can use the 

closed-form expression of the optimal solution from Remark 2, i.e., ���(�|�) = � and ���(�|�) =
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� ⋅ ����
�

�
���

, for every possible realization � of �. This yields a closed-form expression for ��
�(�|�) =

��
�(�) + ∑ ��(0)�

��� = ��
�(�) + � ⋅ 1{������

�(�)} + ∑ �1 − �� ����
�

�� ⋅ � ⋅ ����
�

�
����

���  and we 

calculate ��
�(�) = ∫ ��

�(�|�) ⋅ ��(�) ���
� . The results of these calculations are presented in Table 1, 

revealing that ��
�(�) is increasing in �. As Δ���

�(�) = ��
�(�) − ��

�(� − 1) is decreasing in �, ��
�(�) 

is also concave. 

Moving to � = 2, Propositions 1 and 2 remain applicable (we just observed that ��
�(�) is increasing and 

concave). However, Remark 2 is no longer relevant (Δ���
�(�) ≠ 0). Consequently, we can no longer 

rely on the closed-form expression of the optimal solution. Without the closed-form solution, solving 

the optimization problem for every realization � becomes more challenging. As an example, we focus 

on the specific realization � = 0.1 and � = 5 in detail. 

The maximal number of units that can be sold economically is given by ��,�(0.1) =

���
���,…,�

 {�: ������
� (6 − �) < 0.1} = 3. Consequently, the optimization problem becomes ��

�(5|0.1) =

��
�(5) + ∑ ���Δ���

�(6 − �)��
��� = ��

�(5) + �0.1 − Δ���
�(5)� + ���Δ���

�(4)� + ���Δ���
�(3)�. 

To apply the optimality condition, we note that �
�����(�)�

=
�������(�)�

�����(�)�
= 1 − ��(�) for �~�[0, 1]. The 

optimality condition becomes � ⋅ ��
���(�) ⋅ �� ⋅ ��(�) − (� − 1)� = Δ�����

� (� + 1 − �). 

Optimal Δ�� is given by Δ�� = 0.1 ⋅ ��(0.1) with ��(0.1) such that 0.1 ⋅ �2 ⋅ ��(0.1) − 1� = Δ���
�(4). 

Thus, ��(0.1) = (��⋅����
�(�)��)

�
≈ 0.7635 and Δ�� = �����

�(�)��.�
�

� ≈ 0.0764. Optimal Δ�� is given by 

Δ�� = 0.1 ⋅ ���(0.1)�
�
 with ��(0.1) such that 0.1 ⋅ ��(0.1) ⋅ �3 ⋅ ��(0.1) − 2� = Δ���

�(3). Thus, 

��(0.1) = ��������⋅����
�(�)

�
≈ 0.9318 and Δ�� ≈ 0.0868. Consequently, ��

�(5|0.1) ≈ 0.7928 +

0.059 + 0.0056 + 0.0009 ≈ 0.8583. 

Table 1: Example with �, �~�[�, �] and � ≤ �, � = �, � 

 ��
�(�)  ��

�(�|0.1)  Δ���
�(�)  ��

�(�)   

� = �  0.6250 0.5000 0.5000 0.5000  

� = �  1.0199 0.6250 0.1250 0.6250  

� = �  1.2106 0.7250 0.0741 0.6991  

� = �  1.3419 0.8008 0.0527 0.7518  

� = �  1.4420 0.8583 0.0410 0.7928  
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Similarly, we can calculate ��,�(0.1) = 2, ��,�(0.1) = 1, and ��,�(0.1) = ��,�(0.1) = 0 as well as 

��
�(�|0.1), � ≤ 4 (cf, Table 1). Once again, we observe that ��

�(�|0.1) increases, and ��
�(�|0.1) −

��
�(� − 1|0.1) decreases in �.  

Finally, we numerically derive ��
�(�), � ≤ 5, and, again, observe that these properties are still intact. 

In our example, we have seen that these conditions stayed intact. Now, we want to prove that these 

conditions indeed hold for every � ≤ � and any distribution that meets the assumption formulated in 

Section 3.2.  

Proposition 3  For every �, ��
�(⋅) is increasing and concave.  

Proof: See Supplement S.1. 

Proposition 3 confirms the optimality of prices defined by Proposition 1 in a scenario where base 

willingness-to-pay is observable. The optimality condition is influenced by two factors: the specific 

customer type indicated by the observed base willingness-to-pay and opportunity costs. While the 

former is stochastic and, hence, ex ante unpredictable, the latter is state-dependent and can be determined 

beforehand. Consequently, understanding the dynamics of opportunity costs is crucial for 

comprehending the optimal pricing policy. The subsequent proposition illustrates how opportunity costs 

and the value function evolve over time. Notably, the increase in opportunity costs over time is 

intriguing, suggesting that optimal marginal prices may also experience an upward trend. 

Proposition 4  For every �, it holds: 

a) Δ���
�(�) is increasing in � 

b) ��
�(�) is increasing and concave in � 

Proof: See Supplement S.2. 

For a first impression regarding dynamics of optimal prices, we start with a generic look at the optimality 

condition given by Proposition 1. We will use � as variable for opportunity costs, and replace ��(�) 

with ����

�
�

�
���. With some algebra, we can reformulate the (sufficient) first-order condition to  

 �
(���)⋅���

+ �

����
���

� �
�

���
�⋅�

���
� �

�
���

= �
���

.     (12) 

We will momentarily set aside the fact that Δ�� is our decision variable and consider �, �, and Δ�� as 

arbitrary variables whose sole purpose is to satisfy the equality in (12). The left side of this equation 

increases with � and �, while it decreases with Δ��. To maintain equality, a change in one of these 

variables must result in a change in at least one of the other two variables. There are several possible 

combinations of such variations, but we will emphasize three particularly important ones: 
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a) An increase (decrease) of � can be compensated by a decrease (increase) of � while keeping 

Δ�� constant 

b) An increase (decrease) of � can be compensated by an increase (decrease) of Δ�� while keeping 

� constant 

c) An increase (decrease) of � can be compensated by an increase (decrease) of Δ�� while keeping 

δ constant 

These observations are crucial for understanding in which situations the marginal price for the �th unit 

stays constant, increases, or decreases.  

Now, let us consider a specific situation: In state (�, �) with (marginal) opportunity costs 

Δ�����
� (� + 1 − �), we encounter a particular customer ��,�, and calculate the corresponding optimal 

marginal price Δ��,���|��,�� (based on equation (12)). The question of whether we increase (decrease) 

the marginal price for the �th unit in a follow-up state (� − 1, � − �), � < �, where (marginal) opportunity 

costs are Δ�����
� (� − � + 1 − �), ultimately depends on the future stochastic customer ����,��� we will 

face.  

Hence, we search for the specific customer type � where we maintain optimality of the same marginal 

price Δ��,���|��,�� in the follow-up state (� − 1, � − �). With equation (12), � must fulfill: 

Δ�����
� (� − � + 1 − �)

(� − 1) ⋅ Δ��,���|��,��
+

1

ℎ� ��
Δ��,���|��,��

� �

�
���

� ⋅ �
Δ��,���|��,��

� �

�
���

=
1

� − 1
. 

Certainly, the possibility of solving this equation in closed-form with respect to � is heavily contingent 

on the failure rate ℎ�, and consequently, on the distribution function of �. Distributions featuring a 

simple failure rate, such as the uniform distribution, allow us to formulate a closed-form expression for 

such a �. However, achieving this for every distribution is not possible. 

Nevertheless, we can still glean some insights into the characteristics of a scenario where Δ��,���|��,�� 

maintains optimality in a follow-up state: As mentioned earlier (observation a) from above), we 

observed that an increase (decrease) of opportunity costs can be offset by an appropriate decrease 

(increase) of � without altering Δ��. The formal description of this observation is provided in the 

following lemma. 

Lemma 3  For � + � ≤ �, it holds  

������
� (� − � + 1 − �) ≥ ������

� (� + 1 − �)

⇔ ������,��� − �|����,���� = ���,���|��,�� ⇒ ����,��� ≤ ��,�� 

Proof: This lemma is a formal description of the previous discussion and its results.   □ 



27 

In this section, our discussion has revolved around a scenario where the current customer ��,� is 

observed. Now, let us strive for a more comprehensive understanding of the dynamics of a marginal 

price that is not contingent on the observation of customer ��,�. 

These dynamics are inherently stochastic since marginal prices in both (�, �) and (� − 1, � − �) hinge on 

the arrival of two independent customers, ��,� and ����,���, with their values being (ex ante) unknown. 

Nonetheless, we can quantify the probability of marginal prices increasing or decreasing. For the sake 

of simplicity, let us assume Δ�����
� (� − � + 1 − �) ≥ Δ�����

� (� + 1 − �). Drawing from observation b), 

we know that Δ����,��� − �|��,�� ≥ Δ��,���|��,�� for any ��,�. This implies that the marginal unit price 

in a follow-up state increases compared to the current state, given the same costumer type ��,� in both 

states. Observation c) further establishes that Δ����,�(� − �|�) ≥ Δ����,��� − �|��,�� for every � ≥ ��,� 

(with constant � = Δ�����
� (� − � + 1 − �)). This indicates that if the customer type in the follow-up 

state increases compared to the current one, the marginal unit price increases even further. In summary, 

it follows ����,��� ≥ ��,� ⇒ Δ����,��� − �|����,���� ≥ Δ��,���|��,��, and thus,  

ℙ �Δ����,��� − �|����,���� ≥ Δ��,���|��,��� ≥ ℙ�����,��� ≥ ��,��

= � � � �������,���� �����,���

�

��,�

� �����,�� ���,�

�

�

= � �1 − �����,��� �����,�� ���,�

�

�

= 1 − � �����,�� �����,�� ���,�

�

�

= 1 − �
�����,���

2 �
�

�

=
1
2

. 

This result implies that the probability of the marginal price in the follow-up state being greater than or 

equal to the marginal price in the current state is at least �
�
. Analogously, we can conclude that 

ℙ �Δ����,��� − �|����,���� ≤ Δ��,���|��,��� ≤ �
�
 if Δ�����

� (� − � + 1 − �) ≤ Δ�����
� (� + 1 − �). 

We are now poised to consolidate all the dynamics related to the optimal pricing policy. Theorem 1 a) 

and b) naturally follow from the already outlined dynamics of opportunity costs. They show how optimal 

marginal prices, quoted to the same customer type �, change with � and �, respectively. Theorem 1 c) 

states that customers with a higher base willingness-to-pay encounter higher marginal prices. Lastly, 

Theorem 1 d) takes the stochasticity of � into account. It states that it is more likely for marginal prices 

to decrease from one state to a follow-up state if the opportunity costs are higher in the follow-up state. 
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Theorem 1  For every �, �, � and �, it holds: 

a) Δ��,�(�|�) is increasing in �, ��,�(�) is decreasing in � 

b) Δ��,�(�|�) is decreasing in �, ��,�(�) is increasing in � 

c) Δ��,�(�|�) is increasing in �, ��,�(�) is increasing in � 

d) Δ�����
� (� − � + 1 − �) ≥ Δ�����

� (� + 1 − �) ⇔ ℙ �Δ����,�(� − �|����) ≥ Δ��,�(�|��)� ≥ �
�
 

Proof: In observation b) regarding (12), we established marginal prices are increasing in marginal 

opportunity costs. Thus, a) and b) immediately follow by Propositions 3 and 4.  

c) This is merely a repetition of observation c) regarding (12). 

d) Proof can be found above Theorem 1         □ 

4.2 Observable consumption indicator 

We now assume the firm is able to observe the value of next customer’s consumption indicator, i.e. 

realization � of random variable � is known at the moment the firm decides upon prices. Through this 

partially revealed information about customers’ preferences, the corresponding choice behavior can be 

more accurately assessed. Nevertheless, there is still uncertainty present as the base willingness-top-pay 

� is still stochastic.  

In this section, we follow the same structure as in the previous section: we will discuss the implications 

of the observable consumption indicator on our customer choice model, reduce the action space to 

exclude irrelevant prices, solve the resulting optimization model, and show several structural properties 

regarding optimization model und optimal policy.  

In the following, we will often face a similar structure and use similar arguments as with observable 

base willingness-to-pay. Whenever possible, we try to keep our explanations brief and focus more on 

the differences. In particular, the characteristics related to the value function, opportunity costs, and 

dynamics of optimal marginal prices remain consistent when considering an observable consumption 

indicator. Therefore, Propositions 6 and 7 convey analogous insights to Propositions 3 and 4, 

respectively. Similarly, Theorem 2 aligns with the conclusions drawn in Theorem 1. Consequently, we 

will omit detailed explanations and discussion, and generally refer to Section 4.1. However, it is 

important to note that Propositions 6 and 7, as well as Theorem 2, necessitate specific, new proofs due 

to alterations in the mathematical formulation. 

4.2.1. Customer choice and model formulation 

We have seen in the previous section that selling at least one unit is a deterministic occurrence with 

observable base willingness-to-pay. This does not transfer to a setting where the consumption indicator 

is observable. Every decision a customer might make is now stochastic. To ease notation, we solely 

focus on customers with � > 0. 
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Aiming at utility maximization, necessary conditions for purchasing � units are:  

a) � ≥ ��

∑ �����
���

,  

b) � ≥ �����

∑ �����
���

 for all � ∈ {1, 2, … , � − 1}, and  

c) � ≤ �����

∑ �����
���

 for all � ∈ {� + 1, � + 2, … , �}.  

Analogue considerations as in Section 4.1.1 lead to the definition of relevant prices: 

Lemma 4  Relevant prices � are given by  

ℛ�(�) = �� ∈ ℝ�: 0 ≤
�� − ����

���� ≤
���� − ��

�� ≤ 1  for 1 ≤ � ≤ � − 1� . 

Proof: With �� such that �������

���� = �������

�� , there is only one customer type that is considering purchasing 

� units: the one with realizations �, � such that � = �������

�� . As � is continuously distributed, the 

probability of arrival of exactly this customer type is zero. This is sufficient for the purpose of 

maximizing expected revenue. The same argumentation applies for � = � with �������
���� = 1.  □ 

Similarly to our exploration following Lemma 1, we note that �������

����  represents the minimum value of 

realization � ∈ [0,1] where a customer would have nonnegative marginal utility for purchasing the �th 

unit. This threshold is important and we define 

 ����� − ����� = �������

����    for � = 1, … , �  (13) 

As established in Lemma 4, these thresholds separate the interval [0, 1] in well-defined and ordered 

segments ������ − �����, ��������� − ����, 0 ≤ � ≤ � (setting ��(�� − ���) = 0 and ����(���� −

��) = 1). By definition, and employing the same arguments that led to (9), any customer with � ∈

������ − �����, ��������� − ���� achieves maximum utility when purchasing � units. 

To illustrate this point, consider the following scenario: Imagine a customer with a specific observable 

consumption indicator (e.g., � = 0.8) and an unobservable base willingness-to-pay � with realizations 

� ∈ [0, 1]. The firm quotes an arbitrary price vector � with � ∈ ℛ�(�) (for instance, the same price 

vector depicted in Figure 2). In Figure 4, we portray the marginal utility as a function of every possible 

realization � ∈ [0, 1], i.e., � ⟼ � ⋅ ���� − ��� − �����. We only display the marginal utilities for � ≤ 3. 
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Figure 4: Exemplary marginal utility for � ≤ � depending on realization � 

The marginal utility is a linear function in � with gradient ����. Moreover, the marginal utility at � = 0 

is −��� − �����. As we employed a linear pricing scheme in this example, every of the portrayed lines 

start at −��� − ����� = −0.45. We can clearly observe that the interval [0, 1] (at the red line) is separated 

in four intervals, �0, ��(�� − ��)�, ���(�� − ��), ��(�� − ��)�, ���(�� − ��), ��(�� − ��)�, and 

���(�� − ��), 1�. 

Just like the derivation of (9), restricting the action space on ℛ�(�) has the advantage that the probability 

of selling � units simplifies to: 

��(�|�) = �
�� ���������� − ���� − �� ������ − ������ for 1 ≤ � ≤ � − 1

1 − �� ���(�� − ����)� for � = �
 

The optimization problem with observable consumption indicator is given by 

 ��
�(�) = ∫ max

�∈ℛ�(�)
�∑ ��(�|�) ⋅ ��� − Δ�����

� (�)��
��� � ⋅ ��(�) ���

� + ����
� (�)  (14) 

with boundary conditions ��
�(�) = 0 for � ≥ 0 and ��

�(0) = 0 for � ≥ 0. ��
�(�) is the optimal expected 

revenue-to-go from period � onwards (before observing the customer in �). In contrast to the general 

setting, the firm has access to realization � of customers’ consumption indicator � before quoting prices. 

For every possible �, we denote the corresponding optimal batch prices selected in state (�, �) by 

��(�|�) ∈ ℛ�(�). 

4.2.2. Solution and structural properties 

The maximum number of units we can economically sell depends on the state (�, �) and the realized 

consumption indicator �.  
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Corollary 2  If ����
� (⋅) is increasing and concave, ��,�(�) = ���

���,…,�
 ��: ������

� (� − � + 1) < ����� 

denotes the highest number of units that can be economically sold. It holds that ��: ������
� (� − � + 1) <

����� = �1, 2, … , ��,�(�)�. 

Proof: Δ�����
� (� − � + 1) is increasing in �, while ���� is decreasing.      □ 

In the following, we ignore selling more than ��,�(�) units. Technically, we choose prices �� for � >

��,�(�) sufficiently large such that no sell occurs almost surely. This holds, e.g., for �� = ���� + ����. 

By definition, we have ������
� �� − ��,�(�) + �� < ���,�(�)�� and ������

� �� − ���,�(�) + �� + �� ≥

���,�(�). Consequently, it follows that ������
� �(� − �) − ���,�(�) − �� + �� < ���,�(�)�� and 

������
� �(� − �) − ��,�(�) + �� ≥ ���,�(�), respectively. Utilizing ������

� �(� − �) − ���,�(�) −

�� + �� < ���,�(�)�� < ����,�(�)�����, we can conclude that ��,�(�) − � ∈  ��: ������
� (� − � + �) <

�����, thus establishing ��,���(�) ≥ ��,�(�) − �. Similarly, with ������
� �(� − �) − ���,�(�) + �� +

�� ≥ ������
� �(� − �) − ��,�(�) + �� ≥ ����,�(�)�����, we deduce that ��,�(�) + � ∉  ��: ������

� (� −

� + �) < �����, indicating that ��,���(�) < ��,�(�) + �. Consequently, ��,���(�) either equals 

��,�(�) − � or ��,�(�). This observation leads to the following remark. 

Remark 3  It holds that ��,���(�) ≤ ��,�(�) ≤ ��,���(�) + 1. 

Unlike the previous section where the base willingness-to-pay was observable, there are now two cases 

to consider for the maximal number of units sold in adjacent states. This introduces additional 

complexity in our upcoming proofs. 

Proposition 5  If ����
� (�) is increasing and concave in �, it holds: In every state (�, �) and for every � ∈

[0,1] the optimal marginal price Δ��,�(�|�) for the �th unit, � = 1, … , ��,�(�), is given by Δ��,�(�|�) =

���� ⋅ �� with �� such that ���� ⋅ ��� − �
������

� = Δ�����
� (� + 1 − �).  

Proof: See Supplement S.3. 

Remark 4  For �~�[0,1], the optimality condition leads to a closed-form solution: 

Δ��,�(�|�) =
1
2

⋅ ����� + Δ�����
� (� + 1 − �)�. 

Remark 5  The pricing structure divides customers with the same consumption indicator into groups 

based on their base willingness-to-pay. The higher a customer's willingness-to-pay, the more units are 

being sold. Specifically, a base willingness-to-pay of ��,� separates customers who buy nothing at all 

and customers who purchase at least one unit. 
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Remark 6  In the supplement (namely S.3), we show that Lemma 2 carries over to Section 4.2. Hence, 

it still holds that the expected margin for selling the �th unit is greater than the expected margin for 

selling the � + 1th unit.  

So far, we found the optimal solution in period � under the condition that the value function in period 

� − 1 is increasing and concave in �. We will now proof that this condition indeed holds for the whole 

selling horizon. 

Proposition 6  For every �, ��
�(⋅) is increasing and concave.  

Proof: See Supplement S.5. 

In addition to Proposition 6, further structural properties of value function ��
�(⋅) and resulting 

opportunity costs Δ���
�(�) are given by the following proposition: 

Proposition 7  For every �, it holds: 

a) Δ���
�(�) is increasing in � 

b) ��
�(�) is increasing and concave in � 

Proof: See Supplement S.6. 

We have seen in the previous section that dynamics of opportunity costs are an important driver to 

pricing dynamics. Similarly, based on the optimality condition Δ�� − �

���
���
�����

= �, it again holds that 

optimal marginal prices Δ�� are increasing in customer type � and in opportunity costs �. 

Theorem 2  For every �, �, � and �, it holds: 

a) Δ��,�(�|�) is increasing in �, ��,�(�) is decreasing in � 

b) Δ��,�(�|�) is decreasing in �, ��,�(�) is increasing in � 

c) Δ��,�(�|�) is increasing in �, ��,�(�) is increasing in � 

d) Δ��,�(�|�) is independent of � 

e) Δ�����
� (� − � + 1 − �) ≥ Δ�����

� (� + 1 − �) ⇒ ℙ �Δ����,�(� − �|����) ≥ Δ��,�(�|��)� ≥ �
�
 

Proof: a) – d) are immediate results of Propositions 5, 6, and 7.  

e) holds with Δ�����
� (� − � + 1 − �) ≥ Δ�����

� (� + 1 − �)   

⇒ ℙ �Δ����,��� − �|����,���� ≥ Δ��,���|��,��� ≥ ℙ�����,��� ≥ ��,��

= � � � �������,���� �����,���

�

��,�

� �����,�� ���,�

�

�

= � �1 − �����,��� �����,�� ���,�

�

�

= 1 − � �����,�� �����,�� ���,�

�

�

= 1 − �
�����,���

2 �
�

�

=
1
2
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               □ 

4.2.3. Special case: Uniform Distribution 

In Remark 5, we provided the closed-form expression of optimal marginal prices. This allows us to 

compute selling probabilities and the expected revenue, ��
�(�|�), for every possible realization � of 

random consumption indicator �. Subsequently, these �-dependent expected revenues can be employed 

to calculate the overall expected revenue ��
�(�) of state (�, �):  

��
�(�) =

1
4

⋅ ��1 − Δ�����
� (�)�

�
+

1
2

− 2Δ�����
� (� − 1)

+ �
3
2

− ln �Δ�����
� (� − 1)� ⋅ �Δ�����

� (� − 1)�
�

�

+ � �
1
�

− 2Δ�����
� (� + 1 − �) −

�Δ�����
� (� + 1 − �)�

�

� − 2

�

���

+
2(� − 1)�

�(� − 2) �Δ�����
� (� + 1 − �)�

�
����� + ����

� (�) 

Moreover, we want to point out the special structure of ��,�(�|�): Consisting of ∑ �����
���  and Δ�����

� (�), 

��,�(�|�) is increasing in �. While the first component is apparently concave in � (� ∈ [0,1]), the second 

component is convex in � (as Δ�����
� (�) = ∑ Δ�����

� (� + 1 − �)�
���  and Δ�����

� (� − �) is increasing in 

� (cf. Proposition 6)).  

4.3 Observable base willingness-to-pay and consumption indicator 

In this section, we assume that a firm can observe next customer’s base willingness-to-pay and 

consumption indicator, i.e. realizations � and � of random variables � and �, respectively, are known 

when the firm decides upon prices. Thereby, we eliminate every stochasticity of customers’ behavior 

and the whole optimization problem becomes deterministic: 

��(�|�, �) = 1
� ���

���,…,�
��⋅∑ �����

��� ���,����⋅∑ �����
��� ����

,     1 ≤ � ≤ � 

��(�|�, �) = 1
� ���

���,…,�
��⋅∑ �����

��� �������
,                                          

for � ∈ ℛ�(�, �) = �� ∈ ℝ�: ��(�|�, �) + ∑ ��(�|�, �)�
��� = 1�. Restricting the action space to 

ℛ�(�, �) is a technical decision to make the ��(�|�, �) work the way it is intended. Otherwise, we would 

allow for selling a single customer every batch size at once by setting �� = � ⋅ ∑ �����
���  for every �. 

Alternatively, we could use a more elaborate definition of ��(�|�, �) together with a set of assumptions 
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regarding tiebreakers when a customer faces equally good options. As both ways have the same 

outcome, we preferred to have a simple definition of ��(�|�, �). 

The optimization problem is given by: 

 ��
�,�(�) = ∫ ∫ max

�∈ℛ�(�,�)
�∑ ��(�|�, �) ⋅ ��� − Δ�����

�,�(�)��
��� � ⋅ ��(�)��(�) ���

� ���
� + ����

�,�(�) , 

 (15) 

with boundary conditions ��
�,�(�) = 0 for � ≥ 0 and ��

�,�(0) = 0 for � ≥ 0. Note that we still calculate 

expected revenue even though maximizing is now deterministic. 

Without eliminating demand, the highest possible batch price �� for � units is �� = � ⋅ ∑ �����
��� . Thus, we 

are looking for the batch size with the highest possible additional revenue, i.e. �∗ = arg max
�����

�� ⋅

∑ �����
��� − Δ�����

�,�(�)�. If � ⋅ ∑ ���∗��
��� − Δ�∗����

�,�(�) < 0, we are not able to economically sell something 

to the current customer. In this case, we prefer not selling anything and pick �� > � ⋅ ∑ �����
���  for every 

�. If � ⋅ ∑ ���∗��
��� − Δ�∗����

�,�(�) ≥ 0, we can earn additional revenue. By setting ��∗ = � ⋅ ∑ ���∗��
���  and 

�� > � ⋅ ∑ �����
��� , � ≠ �∗, we ensure � ∈ ℛ�(�, �) and have the optimal solution for given �, �. 

Lemma 5  For every �, �, the best batch size greater than zero is given by  

� = ��� ���
�����

�� ⋅ � ��
���

���

− ������
�,�(�)�. 

The optimal solution to the maximization in (15) is given by: 

 ��,�(�|�, �) = � ∑ �����
���  and ��,�(�|�, �) > � ∑ �����

��� , � ≠ �,  if � ∑ �����
��� − ������

�,�(�) ≥ 0 

 ��,�(�|�, �) > � ∑ �����
���  for every �,     if � ∑ �����

��� − ������
�,�(�) < 0 

Proof: above Lemma 5.  

Even though solving the maximization problem is trivial, calculating ��
�,�(�) is not. There are many 

cases to consider, and thus, it is not easy to find for every unit size � the subset of (�, �) ∈ [0,1]� where 

� = arg max
�����

�� ⋅ ∑ �����
��� − Δ�����

�,�(�)� as well as � ⋅ ∑ �����
��� − Δ�����

�,�(�) ≥ 0. 

Again, it is useful to look at marginal prices and opportunity costs: For � = arg max
�����

�� ⋅ ∑ �����
��� −

Δ�����
�,�(�)� it holds that � ⋅ ���� ≥ Δ�����

�,�(� + 1 − �) and � ⋅ �� < Δ�����
�,�(� − �). For the time being, 

this is a necessary but no sufficient condition on (�, �) ∈ [0,1]�. It only ensures that selling � units is 

better than selling � − 1 and � + 1 units. Neither does it automatically make � the best batch size nor 

does it ensure the firm is earning additional revenue, i.e. � ⋅ ∑ �����
��� − Δ�����

�,�(�) ≥ 0. Looking at the 

aforementioned necessary condition, we observe � ⋅ ���� ≥ � ⋅ ���� ≥ Δ�����
�,�(� + 1 − �), � ≤ �, and 
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� ⋅ �� < � ⋅ �� < Δ�����
�,�(� − �), � > �. Assuming a suitable structure of Δ�����

�,�(⋅), we can derive the 

following lemma: 

Lemma 6  If ����
�,�(⋅) is increasing and concave, it holds: � units is the optimal batch size to sell to every 

customer with (�, �) ∈ [0,1]� such that  � ⋅ ���� ≥ ������
�,�(� + 1 − �), and � ⋅ �� < ������

�,�(� − �). 

We define this number by ��,�(�, �) = ���
���,…,�

 ��: ������
�,�(� − � + 1) ≤ � ⋅ �����. 

Proof: ����
�,�(⋅) is increasing and concave, thus Δ�����

�,�(� + 1 − �) is increasing in �. With (�, �) ∈

[0,1]� such that  � ⋅ ���� ≥ Δ�����
�,�(� + 1 − �), it holds:  

� ⋅ ���� ≥ � ⋅ ���� ≥ Δ�����
�,�(� + 1 − �) ≥ Δ�����

�,�(� + 1 − �), � ≤ �, 

and 

� ⋅ �� ≤ � ⋅ �� < Δ�����
�,�(� − �) ≤ Δ�����

�,�(� − �), � > �. 

Finally, we can conclude max
�����

�� ⋅ ∑ �����
��� − Δ�����

�,�(�)� = � ⋅ ∑ �����
��� − Δ�����

�,�(�) ≥ 0 making � the 

optimal batch size to sell.             □ 

Remark 7  In Sections 4.1 and 4.2, ��,� served as an upper bound on the number of units a firm could 

sell economically, a consequence of the uncertainty arising from the unobservable part of customers’ 

information. During these instances, the firm lacked precise knowledge regarding the actual number of 

units it might sell to a current customer, but it recognized that overall expected revenues could be 

optimized by selling up to ��,� units. However, in this section, stochasticity is entirely eliminated, and 

the firm is fully aware of the quantity of units it sells for a given price. Therefore, ��,� precisely denotes 

the number of units a firm sells to a customer to maximize overall expected revenues.  

Proof of Lemma 6 also showed that a firm sells in optimality at least � units to a customer with (�, �) ∈

[0,1]� such that � ⋅ ���� ≥ Δ�����
�,�(� + 1 − �). This implies that every such customer is purchasing the 

�th unit. We can make use of this observation to show concavity of ��
�,�(⋅) and concentrate on 

��
�,�(⋅ |�, �) = ∑ 1��⋅�����������

�,�(�����)� ⋅ �� ⋅ ���� − Δ�����
�,�(� + 1 − �)��

��� + ����
�,�(⋅) for every 

realization �, �. In the proof of concavity, we need the following property regarding ��,�(�, �), the 

number of units a certain customer is purchasing. 

Lemma 7  If ����
�,�(⋅) is increasing and concave, for every (�, �) ∈ [0,1]2, it holds that  

��,���(�, �) − 1 ≤ ��,�(�, �) ≤ ��,���(�, �). 

Proof: ����
�,�(⋅) is increasing and concave, thus Δ�����

�,� �� + 1 − ��,�(�, �)� ≥ Δ�����
�,� �� + 2 −

��,�(�, �)�. Together with � ⋅ ���,�(�,�)�� ≥ Δ�����
�,� �� + 1 − ��,�(�, �)�, it holds that ��,�(�, �) ≤

��,���(�, �). Based on � ⋅ ���,�(�,�)�� ≤ � ⋅ ���,�(�,�) < Δ�����
�,� �� − ��,�(�, �)�, it also holds that 
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��,�(�, �) + 2 > ��,���(�, �). As ��,�(�, �) and ��,���(�, �) are integer, we can use ��,�(�, �) + 2 ≥

��,���(�, �) + 1 instead.             □ 

We now have everything to state and show the following proposition. 

Proposition 8  ��
�,�(⋅) is increasing and concave. 

Proof: See Supplement S.7. 

Other dynamics of opportunity costs and value function are given in the following proposition. 

Proposition 9  For every �, it holds: 

a) Δ���
�,�(�) is increasing in � 

b) ��
�,�(�) is increasing and concave in � 

Proof: See Supplement S.8. 

Proposition 9 has an immediate implication on dynamics of optimal marginal prices: As Δ���
�,�(�) is 

increasing in �, it is less likely that a customer arrives with � ⋅ ���� ≥ Δ���
�,�(� + 1 − �) for higher �. 

Thereby, the probability of selling the �th unit ℙ �� ⋅ ���� ≥ Δ���
�,�(� + 1 − �)� decreases. Moreover, 

as selling � units is increasingly restricted to customers with high � and � in the optimal solution, the 

average price ��,�(�) that can be earned by selling � units increases. 

We conclude this section with a summary of all dynamics regarding optimal marginal prices we found.  

Theorem 3  For every �, �, �, and �, it holds: 

a) ��,�(�|�, �) is constant in � as long as � = ��,�(�, �), ��,�(�, �) is decreasing in � 

b) ��,�(�) is increasing in � for every � 

c) ��,�(�|�, �) is constant in � as long as � = ��,�(�, �), ��,�(�, �) is increasing in � 

d) ��,�(�) is decreasing in � for every � 

e) ��,�(�|�, �) is increasing in � and � for every �, ��,�(�, �) is increasing in � and � 

Proof: a) – e) follow by Lemma 5, Lemma 6, Proposition 8, and Proposition 9.    □ 

In light of Theorem 3, it is evident that a firm maintains the same price for two customers with identical 

� and � in adjacent states as long as the optimal batch size ��,�(�, �) remains unchanged (refer to a) and 

c)). However, the optimal batch size tends to decrease over time and increase with capacity. Essentially, 

the scarcer the product, the smaller the optimal batch size. Additionally, the firm quotes higher prices to 

customers with higher � or � and tends to increase the offered batch size (cf., e)).  

Moreover, we've observed that the average price quoted by a firm for � units increases with � and 

decreases with � (cf., b) and d)). Understanding the dynamics of average prices is advantageous as they 

are not contingent on a specific customer represented by � and �. In any selling process, the realization 
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of a customer stream with specific �� and �� can lead to counterintuitive price changes (such as raising 

prices even if the firm did not sell in the previous period). However, on average, the optimal policy 

adheres to the conventional intuitive structure where prices increase if the product becomes scarcer (due 

to an increase of � or decrease of �).  

5 Simulation Study 

In this section, we compare earned revenues of (up to) four different kinds of observable information: 

 Full information (FI): Observable base willingness-to-pay � and consumption indicator � (refer to 

Section 4.3).   

As there is perfect personalized pricing and deterministic customer behavior, this scenario reflects 

the highest possible revenues earned. We will often refer to this case as upper bound. 

 Partial information (PI-�): Observable base willingness-to-pay � (refer to Section 4.1).   

In this scenario, we have no closed-form solution for the optimization problem, and thus, solve it 

numerically. 

 Partial information (PI-�): Observable consumption indicator � (refer to Section 4.2).  

In this scenario, we have a closed-form solution if �~�[0, 1]. Otherwise, we solve it numerically. 

 No information (NI):   

We use heuristic � from Schur (2023) and describe it briefly in Section 5.1. This heuristic solves the 

optimization problem without observable information for � = 1 optimally, and for � > 1 

approximately.  

For our simulation study, we align our setting with Gallego et al. (2020). Accordingly, we set � =

1, … , 40, � = 1, … , 120, and consider �, � ~�[0, 1]. In each state, we employ a random sample of 

10,000 realizations for both � and �. Throughout Section 5, each presented revenue is derived from 

this randomized dataset and the corresponding policy generated by one of our mechanisms or heuristics. 

In Section 5.1, we describe all three heuristics developed in Schur (2023) for the no information case 

(NI). Specifically, we elaborate on heuristic D, as it has proven to be the best-performing one. In Section 

5.2, we determine the optimal solution for all four types of observable information: FI, PI-�, PI-�, and 

NI, across every state (�, �), � ≤ 40, � ≤ 120. The pair-wise differences in the resulting expected 

revenues represent the value of information. For instance, the discrepancy between the revenues of FI 

and PI-� indicates the additional revenue that could be earned if both � and � were observable instead 

of only �.  

Moving to Section 5.3, we delve into the impact of the distribution of � and �. Alongside the uniform 

distribution, we opt for a (truncated) normal distribution with a mean of 0.5 and a standard deviation of 
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0.1. This introduces two distributions with the same mean but significantly different deviations. In 

Section 5.4, we relax our assumption that parameters can be precisely observed. Instead, we operate 

with predefined distinct intervals, assuming that the firm can accurately allocate (formerly observable) 

realizations to these intervals. Finally, in Section 5.5, we delve into an additional layer of decision-

making. Specifically, we explore the scenario where the firm has the autonomy to determine its initial 

stock and investigate the implications of allowing the firm to decide on restocking in the middle of the 

planning horizon. 

5.1 Heuristics for the no information case 

The following heuristics �(�), �(�), and D were developed in Schur (2023), and we refer to this work 

for a detailed analysis. However, we want to shortly explain how these heuristics work and why we 

chose to employ heuristic D. 

Heuristics �(�) and �(�) share the same underlying idea and rely on the results of our work. In our 

research, we demonstrated that we can find the optimal solution if we can observe the realization of � 

(Section 4.2) or � (Section 4.1). The optimal price vectors are dependent on the realization of these 

random variables, becoming random optimal price vectors. Consequently, we can build the expected 

value and obtain a price vector known as the expected optimal price in Schur (2023). Both heuristics 

differ in the realization they use to define these random optimal price vectors. �(�) employs the 

realization of �, utilizing our work discussed in Section 4.2, while �(�) builds on the realization of �, 

stemming from our work discussed in Section 4.1. 

Heuristic D decomposes batches into distinguished units (1st, 2nd, etc.) and separately optimizes prices 

for each �th unit, where � = 1, … , �. This approach utilizes a simplified customer choice behavior and is 

similar to the one applied in Sections 4.1 and 4.2 to solve the optimization problem (see, e.g., (11)). 

However, in our case, we initially introduced this decomposition as an upper bound to our problem and 

later proved that it yields in the same values and optimal solutions as the original problem. This 

equivalence does not hold for a setting where neither random variable is observable. In such a scenario, 

this decomposition does not result in the same values and solutions and does not constitute an upper 

bound. However, in a simulation study, this heuristic yielded the highest revenues. It is worth noting 

that �(�) produced almost the same revenues. This could be interpreted as an indication that both 

heuristics might be relatively close to the (unknown) optimal value. The choice to employ heuristic D 

in our current work was driven by its demonstrated effectiveness and higher revenue outcomes in 

comparison to the other two heuristics. 

All three heuristics are further enhanced with the help of a fluid approximation. The fluid approximation 

finds the optimal solutions in states without opportunity costs (i.e., for � = 1). Additionally, it forms a 

policy that is asymptotically optimal (refer to, e.g., Schur, 2023, Maglaras & Meissner, 2006, and 

Gallego & van Ryzin, 1997) and transfers this property to heuristics it is combined with.  
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5.2 Value of Information 

Table 2 shows expected revenues for all kinds of observable information with � ∈

{1, 20, 40, 60, 80, 100, 120}. Scenarios FI and NI are the upper and lower bound, respectively. In 

between, PI-� is outperforming PI-� in every state. For � = 1, there is just one unit of the product for 

sale, and thus, no multiunit demand can be served. In this state, PI-� is performing like the full 

information scenario FI, and PI-� like the no information scenario NI. The more capacity, the higher is 

the importance of attending customers’ demand for more than one unit. This can be seen by comparing 

mechanisms PI-� and PI-�. While the absolute difference is increasing for � ≤ 100, we can observe 

that the relative difference is shrinking between those two scenarios for � ≥ 60. 

Table 2: Revenues for � ≤ ���, � = �� 

� = ��  FI PI-� PI-� NI  

� = �  0.96 € 0.96 € 0.91 € 0.91 €  

� = ��  15.50 € 15.08 € 12.62 € 12.40 €  

� = ��  26.70 € 24.53 € 20.18 € 19.36 €  

� = ��  35.70 € 31.03 € 25.71 € 24.15 €  

� = ��  43.29 € 35.82 € 30.06 € 27.71 €  

� = ���  49.84 € 39.53 € 33.63 € 30.49 €  

� = ���  55.61 € 42.50 € 36.62 € 32.74 €  
 

To get a clear image regarding the relative value of information, we divide expected revenue of every 

scenario by upper bound FI. Thereby, we show the percentage of the best possible outcome every kind 

of information yields. 

 

Figure 5: Performance of all mechanism relative to an upper bound for � ≤ ���, � = �� 

Figure 5 displays the same order as shown in Table 2, i.e. FI ≥ PI-� ≥ PI-� ≥ NI. For a lower amount 

of capacity (� ≤ 20), mechanisms FI and PI-� as well as PI-� and NI are performing similarly with a 
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significant gap between both groups. For a higher amount of capacity (� ≥ 40), mechanism FI is 

significantly outperforming PI-� while PI-� is marginally better than NI. The gap between PI-� and 

PI-� is decreasing with capacity. However, it is still noticeably large. 

These observations lead to the following conclusions: Observing the base willingness-to-pay is 

considerably more valuable than observing the consumption indicator. However, observing the 

consumption indicator is not useless. This information adds value in settings where the capacity is only 

moderately scarce or where the firm is able to also observe the base willingness-to-pay. In the latter 

case, the increase in revenue is especially large for higher capacity levels (ca. 30% for � = 120). 

5.3 Different Distributions 

In this section, we explore the impact of the distribution of � and � on expected revenues resulting from 

partial (PI-� and PI-�) and full information (FI) about customers’ private information. We consider two 

different distributions: a uniform distribution (denoted as �[0,1]) and a (truncated) normal distribution 

with mean of 0.5 and standard deviation of 0.1 (denoted as �[0.5,0.1,0, 1]). Both distributions share the 

same mean (0.5) but have significantly different deviations (� �
��

≈ 0.28 vs. 0.1). We investigate every 

combination of � and � following one of the two distributions. 

Table 3: Revenues for � ≤ ���, � = �� and different distributions 

 �, � ∈ �[0,1]  �~�[0,1], �~�[0.5,0.1,0, 1]  

� = ��  FI PI-� PI-�  FI PI-� PI-�  

� = �  0.96 € 0.96 € 0.91 €  0.96 € 0.96 € 0.85 €  

� = ��  15.50 € 15.08 € 12.62 €  14.66 € 14.60 € 11.17 €  

� = ��  26.70 € 24.53 € 20.18 €  23.09 € 22.19 € 15.75 €  

� = ��  35.70 € 31.03 € 25.71 €  28.60 € 26.42 € 18.05 €  

� = ��  43.29 € 35.82 € 30.06 €  32.37 € 28.86 € 19.27 €  

� = ���  49.84 € 39.53 € 33.63 €  35.00 € 30.27 € 19.95 €  

� = ���  55.61 € 42.50 € 36.62 €  36.85 € 31.08 € 20.33 €  

 �~�[0.5,0.1,0, 1], �~�[0,1]  �, �~�[0.5,0.1,0, 1]  

� = ��  FI PI-� PI-�  FI PI-� PI-�  

� = �  0.69 € 0.69 € 0.65 €  0.69 € 0.69 € 0.65 €  

� = ��  11.65 € 11.56 € 10.23 €  11.45 € 11.45 € 9.80 €  

� = ��  21.36 € 20.79 € 17.91 €  20.13 € 20.05 € 15.80 €  

� = ��  29.71 € 27.87 € 24.20 €  26.05 € 25.03 € 19.72 €  

� = ��  37.05 € 33.20 € 29.52 €  30.39 € 28.03 € 22.37 €  

� = ���  43.56 € 37.34 € 34.13 €  33.53 € 29.82 € 24.18 €  

� = ���  49.39 € 40.66 € 38.18 €  35.80 € 30.87 € 25.41 €  
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Table 3 presents the results of our simulation study. One noticeable effect is that expected revenues are 

higher for distributions with higher deviation. This holds true for every kind of observable information 

(PI-�, PI-�, and FI) as well as for random variables � and �. However, the magnitude of this effect 

varies across different scenarios. A smaller deviation of �, i.e., �~�[0.5,0.1,0, 1] instead of �~�[0,1], 

has a more (less) significant impact on settings with low (high) capacity �. Conversely, for �, we observe 

the opposite effect. Furthermore, the order observed in Section 5.1 is validated for every combination 

of distributions. Notably, for �~�[0.5,0.1,0, 1] and �~�[0,1], PI-� is very close to PI-�, and the gap 

between both mechanisms diminishes for higher �. 

To provide a clearer overview of the influence of different distributions on different kinds of observable 

information, we depict the relative performances of PI-� and PI-� in comparison to FI in Figure 6. Once 

again, it is evident that observing the realization of � is more crucial than observing the realization of � 

in each of the displayed scenarios. The relative difference between both partial information mechanisms 

is more pronounced for a state with severe scarcity (� ≤ �) than for one with moderate scarcity (� ≥

2 ⋅ �). Moreover, the gap between those two mechanisms is greatest for �~�[0,1], �~�[0.5,0.1,0, 1] 

and smallest for �~�[0.5,0.1,0, 1], �~�[0,1]. This emphasizes that observing a random variable with 

a higher deviation carries more potential than observing a random variable with a lower deviation 

(although it is still not enough for PI-� to surpass PI-� in the latter scenario). Lastly, in states with 

severe scarcity (� ≤ �), observing � is almost as beneficial as observing both � and �. This is most 

noticeable in the third and fourth scenarios where �~�[0.5,0.1,0, 1], there is a high chance of a 

moderate to high realization of �. For example, there is roughly a 70% chance of observing a realization 

of � ≥ 0.45. Thereby, most of the time, it is favorable to sell at least the first unit in every period. As 

there is not enough capacity to sell more than one unit on average, a second unit is seldom sold in any 

period (the price of the second unit is going to be quite high, and thus, a second unit is only sold if the 

realization of � is close to 1). For � = �, this is most apparent. The expected revenue in every period is 

close to the expected value of � (0.5), and accordingly, the expected revenue for (�, �) = (40,40) is 

close to 20 for PI-� and FI (cf. Table 3). 
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Figure 6: Partially observable information (PI-� and PI-�) relative to full information (FI) for 
� ≤ ���, � = �� and different distributions  

Finally, we have a closer look at the third scenario, i.e., �~�[0.5,0.1,0, 1], �~�[0,1]. We have seen 

that observing � was almost as good as observing � for � = 120. Indeed, it is evident that observing � 

becomes more crucial in states with less scarcity. Scarcity can be described by the ratio �/�, as less 

time (i.e., demand) or more capacity decreases scarcity. In our simulation study, scarcity varies from 

1/120 to 120/1. For each � ≤ 40, we assessed whether PI-� outperforms PI-� for some capacity � ≤

120. We found that for � ≤ 27, there is always a capacity ��(�) such that PI-� outperforms PI-� for 

� ≥ ��(�). This ��(�) forms a line with a slope of approximately 4.5 (cf. Figure 7). It is worth noting 

that this slope represents the minimum scarcity for which PI-� outperforms PI-�. 
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Figure 7: Minimal capacity ��(�) for which PI-� outperforms PI-� 

5.4 Customer segmentation 

In this section, we relax our initial assumption that realizations of random variables can be precisely 

observed. Instead, we consider predefined customer segments and assume the firm can accurately assign 

arriving customers to these segments. Technically, we divide [0, 1] into several disjunct intervals, and 

we assume that the firm can only observe the specific interval to which a realization of the random 

variable belongs. 

There are different approaches to designing � intervals [��, ��], where � ≤ �, with �� = ���� for � ≤

� − 1, �� = 0, and �� = 1. Note that these intervals are almost surely disjunct, which is sufficient in 

our setting. One approach could be to employ equidistant intervals, i.e., �� − �� = �� − �� for all 

�, � ≤ �. Another approach is to use equally likely intervals, i.e., �(��) − �(��) = �(��) − �(��) 

for all �, � ≤ �. Under a uniform distribution, which is employed in this section, both approaches lead 

to the same intervals. We assume that the firm can observe the correct interval [��, ��] to which the 

realization of � (PI-�), � (PI-�), or both (FI) belongs.  

The firm then utilizes the (conditional) mean of this interval, calculated as �
�(��)��(��) ∫ � ⋅  �(�) ����

��
, 

as an estimate for the unknown precise realization. Unobserved parameters, such as � in PI-�, are treated 

as random variables. Employing such an estimate transforms our mechanisms (PI-�, PI-�, and FI) into 

heuristics (H-�, H-�, and H-FI), resulting in calculated revenues (based on the estimate) that may differ 

from simulated revenues (based on realizations).  

Moreover, we adapted the main idea behind heuristic D from Schur (2023) to create another heuristic 

designed to work with truncated uniform distributions. We made two modifications to the original 

formulation of D: First, the underlying uniform distribution is no longer required to be �[0, 1] but can 

be truncated on any interval [��, ��], i.e. �[��, ��]. Second, we omitted the part involving the fluid 
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approximation as we lacked the necessary analytical results to efficiently solve it for truncated uniform 

distributions.  

We implemented three versions of this heuristic, namely, D-�, D-�, and D-FI. For these versions, we 

assume the observation of the correct interval [��, ��] to which the realization of � (D-�), � (D-�), or 

both (D-FI) belongs, and utilize the truncated probability distribution �[��, ��] for the corresponding 

random variable. 

In our simulation study, we examine six scenarios resulting from a combination of three different kinds 

of observable information (�, �, or both) and two different degrees of customer segmentation (size of 

�). We chose a very low � (= 2) and a medium-sized � (= 5). Apparently, for a large �, we would 

obtain almost identical results to those presented in Section 5.1. In each scenario, we apply two 

heuristics, one from our mechanisms with the corresponding estimate (H-�, H-�, and H-FI) and one of 

the three versions of D (D-�, D-�, and D-FI).  

The findings from our simulation study are presented in Table 4, with each column corresponding to 

one of the six scenarios and showcasing the revenues generated by the respective H and D heuristics. A 

notable observation emerges: consistently, D outperforms H. This suggests that neglecting uncertainty 

in observed parameters (by assuming an estimate instead of a random variable on a truncated 

distribution) is more detrimental than substituting the true customer choice model with a simplified 

version.  

Table 4: Revenues for � ≤ ���, � = �� under customer segmentation 

 � = 2  � = 5  

� = ��  H-FI H-� H-�  H-FI H-� H-�  

� = �  0.50 € 0.50 € 0.91 €  0.89 € 0.89 € 0.91 €  

� = ��  9.61 € 9.93 € 11.58 €  12.75 € 12.78 € 12.19 €  

� = ��  14.90 € 17.74 € 19.10 €  20.36 € 20.50 € 19.33 €  

� = ��  17.81 € 23.05 € 23.71 €  25.71 € 26.02 € 24.08 €  

� = ��  19.77 € 26.90 € 26.62 €  29.56 € 30.14 € 27.43 €  

� = ���  20.70 € 29.84 € 28.63 €  32.41 € 33.31 € 29.89 €  

� = ���  21.33 € 32.15 € 30.04 €  34.65 € 35.85 € 31.76 €  

� = ��  D-FI D-� D-�  D-FI D-� D-�  

� = �  0.91 € 0.91 € 0.91 €  0.92 € 0.92 € 0.91 €  

� = ��  12.64 € 12.62 € 12.44 €  13.83 € 13.75 € 12.53 €  

� = ��  20.26 € 20.16 € 19.44 €  22.84 € 22.35 € 19.73 €  

� = ��  25.73 € 25.51 € 24.22 €  29.40 € 28.31 € 24.76 €  

� = ��  29.86 € 29.49 € 27.72 €  34.40 € 32.72 € 28.55 €  

� = ���  33.07 € 32.57 € 30.43 €  38.36 € 36.12 € 31.53 €  

� = ���  35.65 € 35.04 € 32.60 €  41.56 € 38.83 € 33.91 €  
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In D, the order of the value of observable information aligns with the one presented in Section 5.2. 

However, this is not the case for H. Specifically, H-� surpasses H-FI and H-� for � = 2 and � = 5, 

and H-� outperforms H-FI for � = 2. The descending order of performance in H-FI provides further 

evidence of the adverse effects of replacing truncated distributions with estimates, given that two 

random variables in H-FI are replaced by estimates.  

Unsurprisingly, simulated revenues exhibit an upward trend with a more detailed observation of 

customer segments, applicable to both H and D. To better grasp the impact of the granularity in customer 

segmentation, a comparison between simulated revenues for D (presented in Table 4) and those of Table 

2 is helpful. The simulated revenues for FI, P-�, and P-� in Table 2 represent an upper bound, stemming 

from a scenario where the exact realization was observable, akin to a scenario with � = ∞.  

The performance of D under � = 2 (dashed line) and � = 5 (solid line) in relation to their respective 

upper bounds is visually depicted in Figure 8. It becomes evident that segmenting customers based 

solely on their consumption indicator (dark green) is notably more robust than segmenting based on 

their base willingness-to-pay (light green) or a combination of both parameters (blue). However, an �-

based costumer segmentation consistently achieves over 90% of its upper bound. Furthermore, it results 

in considerably higher simulated revenues than a �-based customer segmentation (cf. Table 4). This 

emphasizes the significance of observing � – the finer the granularity, the better the results. 

 

Figure 8: Performance of different customer segmentations with � = �� 

5.5 Stocking and Restocking 

In this section, we introduce an additional layer of decision-making: stocking. Specifically, we consider 

the firm's ability to determine the initial stocking level. Furthermore, in an extended scenario, we allow 

the firm to replenish its stock in the middle of the planning horizon at � = 20.  
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For both decisions, we assume that the firm incurs constant unit acquisition costs denoted by �. 

Therefore, at the beginning of the planning horizon (� = 40), the firm must expend � ⋅ � to acquire a 

stock of � units. Consequently, the optimization of the initial decision is expressed as: 

 max
�∈ℤ

{��(�) − � ⋅ �}    (16) 

Within this maximization framework, ��(�) can be substituted with ��
�,�(�), ��

�(�), or ��
�(�), 

depending on the type of information that is observable.  

Additionally, in the restocking scenario the firm has the flexibility to determine the restocking quantity 

between customers in periods � = 21 and � = 20. This decision is based on max
�∈ℤ

{���(� + �) − � ⋅ �} 

with � denoting the restocking quantity. By additionally updating ���(� + �) with max
�∈ℤ

{���(� + �) −

� ⋅ �}, we proactively incorporate the possibility of restocking between � = 20 and � = 21 into our 

pricing decisions for � ≥ 21. This adaption results in a new optimal policy that leans slightly towards 

selling more units between � = 20 and � = 40, as scarcity can be mitigated through the restocking 

option. 

Table 5, displays simulated profits for stocking and restocking scenarios. We examine three distinct 

acquisition costs (� ∈ {0.3, 0.4, 0.5}). However, the integration of a restocking option notably amplifies 

overall profit, showcasing an improvement of up to 6% (observable �, � = 0.5). Additionally, in the 

restocking scenario, the optimal initial stock is consistently lower compared to the stocking in a scenario 

without restocking. 

Table 5: Profits for � ≤ ���, � = �� under stocking and restocking 

 With restocking  Without restocking  

� = �. �  FI PI-� PI-�  FI PI-� PI-�  

Optimal starting 
stock � 92 51 41  103 54 44  

Simulated profit 20.29 € 13.81 € 8.59 €  19.85 € 13.10 € 8.21 €  

� = �. �  FI PI-� PI-�  FI PI-� PI-�  

Optimal starting 
stock �  57 35 25  63 38 26  

Simulated profit  12.20 € 9.05 € 5.03 €  11.72 € 8.55 € 4.79 €  

� = �. �  FI PI-� PI-�  FI PI-� PI-�  

Optimal starting 
stock �  36 25 15  39 27 16  

Simulated profit  7.08 € 5.68 € 2.85 €  6.70 € 5.35 € 2.70 €  
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6 Conclusion 
In this study, we delved into a dynamic pricing framework encompassing multiunit demands, driven by 

customers’ base willingness-to-pay and consumption indicator. Our exploration considered three 

scenarios, each involving the firm's observation of the current customer's base willingness-to-pay, 

consumption indicator, or both. We found the optimality condition for each case. For the second (under 

uniform distribution) and third case, we derived a closed-form expression of the optimal batch prices.  

In contrast to standard singleunit dynamic pricing with time-homogenous demand, economically selling 

is not always possible in our multiunit dynamic pricing context. In particular, larger batches were 

frequently priced-out, as convex increasing opportunity costs tended to surpass concave increasing 

willingness-to-pay. This stands in contrast to singleunit dynamic pricing, where there always exists a 

price at which the firm can increase its overall expected revenue  

We showed well-known monotonicity in time and capacity holds for all cases, inducing an intuitive 

structure with regard to scarcity of the product, and ensuring the existence of a unique optimal solution. 

By solving all cases to optimality, we calculated the value of all three types of information a firm might 

obtain from profiling its current customer. Additionally, we analyzed the impact of customer 

segmentation when precise observation of customers' private information is unattainable. With this 

knowledge, a firm gains the ability to assess the profitability of potential investments in customer 

profiling and segmentation. Furthermore, we provide guidance on leveraging our results to make 

informed decisions regarding optimal initial stocking and restocking strategies. 
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Supplement: Multiunit Dynamic Pricing with Different 

Types of Observable Customer Information 

S.1 Proof of Proposition 3 

The value function is obviously increasing in � as there is no downside in having more capacity. 

Moreover, there is a positive probability to earn additional revenue making it strictly increasing for � ≥

1. We show the concavity of ��
�(�|�) = ����

� (�) + ∑ max
���∈[�,�]

��1 − �� ����Δ����� ⋅ �Δ�� −�
���

Δ�����
� (� + 1 − �)�� = ∑ ���Δ�����

� (� + 1 − �)��
���  by induction over � for any realization �: 

� = 1: By definition ��
�(�) = 0, and thus, Δ���

�(�) = 0 for every �. We observe  

Δ���
�(�|�) = ��

�(�|�) − ��
�(� − 1|�) = � ��(0)

�

���

− � ��(0)
���

���

= ��(0) ≥ ����(0)

= Δ���
�(� + 1|�). 

With Lemma 2 a), it holds that Δ���
�(�|�) is decreasing in �, and thus, ��

�(⋅ |�) is concave. Finally, it 

also holds that ��
�(⋅) = ∫ ��

�(⋅ |�) ⋅ ��(�) ���
�  is concave. 

� ↷ � + 1:  
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Δ�����
� (� + 1|�) − Δ�����

� (�|�) = ����
� (� + 1|�) − 2 ⋅ ����

� (�|�) + ����
� (� − 1|�)

= ��
�(�) − 2 ⋅ ��

�(� − 1) + ��
�(� − 2) + � ���Δ���

�(� + 2 − �)�

����,���(�)

���

− 2

⋅ � ���Δ���
�(� + 1 − �)�

����,�(�)

���

+ � ���Δ���
�(� − �)�

����,���(�)

���

= Δ���
�(�) − Δ���

�(� − 1) + ���Δ���
�(�)� − ���Δ���

�(� − 1)�

+ �����,���(�) �Δ���
� �� + 2 − ����,���(�)��

− �����,�(�) �Δ���
� �� + 1 − ����,�(�)��

+ � �������Δ���
�(� + 1 − �)� − ���Δ���

�(� + 1 − �)��

����,���(�)

���

− ������Δ���
�(� − �)� − ���Δ���

�(� − �)���

≤ Δ���
�(�) − Δ���

�(� − 1) + ���Δ���
�(�)� − ���Δ���

�(� − 1)�

+ �����,���(�) �Δ���
� �� + 2 − ����,���(�)��

− �����,�(�) �Δ���
� �� + 1 − ����,�(�)��

≤ Δ���
�(�) − Δ���

�(� − 1) + ���Δ���
�(�)� − ���Δ���

�(� − 1)�

≤ Δ���
�(�) − Δ���

�(� − 1) − �1 − �� ����Δ���
�(�)��� ⋅ �Δ���

�(�) − Δ���
�(� − 1)�

≤ 0 

The first and second inequality follow by Lemma 2 and the induction hypothesis, the third inequality by 

���Δ���
�(� − 1)� ≥ �1 − �� ����Δ���

�(�)��� ⋅ �� ⋅ ���Δ���
�(�)� − Δ���

�(� − 1)� with 

���Δ���
�(�)� being the optimal solution to ���Δ���

�(�)�. Finally, it holds that  

Δ�����
� (� + 1) − Δ�����

� (�) = � �Δ�����
� (� + 1|�) − Δ�����

� (�|�)� ⋅ ��(�) ��
�

�
≤ 0. 

            □ 

S.2 Proof of Proposition 4 

We show part a), i.e. Δ���
�(�) ≥ Δ�����

� (�), by induction:   

� = 1:  

Δ���
�(�|�) − Δ���

�(�|�) = Δ���
�(�|�) ≥ 0 
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� ↷ � + 1:  

Δ�����
� (�|�) − Δ���

�(�|�) = ����
� (�|�) − ����

� (� − 1|�) − ��
�(�|�) + ��

�(� − 1|�)

= ��
�(� − 1) − ��

�(� − 2) − ����
� (� − 1) + ����

� (� − 2)

+ � ���Δ���
�(� + 1 − �)�

����,�(�)

���

− � ���Δ���
�(� − �)�

����,���(�)

���

− � ���Δ�����
� (� + 1 − �)�

��,�(�)

���

+ � ���Δ�����
� (� − �)�

��,���(�)

���

= Δ���
�(� − 1) − Δ�����

� (� − 1) + ���Δ���
�(� − 1)� − ���Δ�����

� (� − 1)�

+ � �������Δ���
�(� − �)� − ���Δ���

�(� − �)��

����,���(�)

���

− ������Δ�����
� (� − �)� − ���Δ�����

� (� − �)��� − 1���,���(�)�����,���(�)���

⋅ � ������Δ�����
� (� − �)� − ���Δ�����

� (� − �)��

��,���(�)

������,���(�)��

≥ Δ���
�(� − 1) − Δ�����

� (� − 1) + ���Δ���
�(� − 1)� − ���Δ�����

� (� − 1)�

≥ Δ���
�(� − 1) − Δ�����

� (� − 1) − �1 − �� ����Δ�����
� (� − 1)���

⋅ �Δ���
�(� − 1) − Δ�����

� (� − 1)� ≥ 0 

with ����,�(�) = ����,���(�) + 1, and ��,�(�) = ��,���(�) + 1. Moreover, it holds that 

����,���(�) ≤ ��,���(�). The inequalities follow by Lemma 2, the induction hypothesis, ����(�) ≤

��(�), and suboptimality of ���Δ�����
� (� − 1)� for ���Δ���

�(� − 1)�. The last step is given by 

Δ�����
� (�) − Δ���

�(�) = ∫ Δ�����
� (�|�) − Δ���

�(�|�) ⋅ ��(�) ���
� ≥ 0. 

b) There is no downside in having more time to sell remaining capacity. In the contrary, there is always 

a positive probability for earning additional revenues by having additional selling opportunities. Thus, 

value function ��
�(�) is increasing. Concavity, i.e. ����

� (�) − ��
�(�) ≤ ��

�(�) − ����
� (�) is given:  

����
� (�|�) − ��

�(�) − ��
�(�|�) + ����

� (�)

= Δ�����
� (�) − Δ���

�(�)

+ � ����Δ���
�(� + 1 − �)� − ���Δ�����

� (� + 1 − �)��

����,�(�)

���

− 1���,�(�)�����,�(�)���

⋅ � ���Δ�����
� (� + 1 − �)�

��,�(�)

������,�(�)��

≤ 0 
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with ��,�(�) ≥ ����,�(�) as Δ���
�(� + 1 − �) ≤ Δ�����

� (� + 1 − �) (cf. part a) of this proposition). 

Inequality follows by Lemma 2 and again part a) of this proposition. Finally, ����
� (�) − 2��

�(�) +

����
� (� − 1) = ∫ �����

� (�|�) − ��
�(�) − ��

�(�|�) + ����
� (�)� ⋅ ��(�) ���

� ≤ 0.   □ 

S.3 Proof of Proposition 5 

Proof of Proposition 5 consists of similar steps as the proofs of Propositions 1 and 2 with slightly 

different math, stemming from our knowledge regarding customer’s consumption indicator (instead of 

customer’s base willingness-to-pay). Thus, we follow the same roadmap: 

1. Break down the optimization problem into ��,�(�) separate optimization problems that are not 

connected to each other 

2. Show that the first order condition is sufficient to find the unique optimal solution to each of 

these problems by: 

a. Replacing Δ�� by � = �1 − �� � ���

������ as our decision variable to eliminate opportunity 

costs in our second derivative 

b. Calculating the first derivative to have a necessary condition on optimality and showing 

the existence of an optimal solution on (0, 1) 

c. Calculating the second derivative to prove concavity of the optimization problem 

3. Show that the optimal solutions of the ��,�(�) separate optimization problems constitute the 

optimal solution of our original optimization problem 

1. We build the related optimization problems, � = 1, … , ��,�(�): 

 max
���∈��,�����

��1 − �� � ���

������ ⋅ �Δ�� − Δ�����
� (� + 1 − �)��  

The idea behind this formulation is to optimize marginal prices separately. Thereby, we technically 

assume that customers are allowed to separately purchase the �th unit without purchasing the 1st, 2nd, 

…, or � − 1th unit of the product. On a more formal note: We drop the conditions on prices that are 

formulated in ℛ�(�). Thereby, we created ��,�(�) optimization problems whose sum is an upper bound 

to our original problem. We want to stress that the objective value of our original problem for some 
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price vector � ∈ ℛ�(�) equals the sum of the objective values of the problems defined above for Δ�� =

�� − ����. This follows by definition of ��(�|�). 

2.a. We define � = �1 − �� � ���

������ to rewrite the optimization problem for every �: 

 max
���∈��,�����

��1 − �� � ���

������ ⋅ �Δ�� − Δ�����
� (� + 1 − �)�� = max

�∈[�,�]
�� ⋅ ����� ⋅ ��

��(1 − �) −

Δ�����
� (� + 1 − �)�� 

with ��
�� being the inverse of ��. Moreover, we want to stress that � and Δ�� are connected by a bijective 

function. Hence, there is a unique matching between these two variables. 

2.b. Building the first derivative, we get 

�
��

� ⋅ ����� ⋅ ��
��(1 − �) − Δ�����

� (� + 1 − �)�

= ���� ⋅ ��
��(1 − �) − Δ�����

� (� + 1 − �) − � ⋅ ���� ⋅
1

�����
��(1 − �)�

. 

On the boundaries, the first derivative is positive for � = 0 (remember that ���� > Δ�����
� (� + 1 − �) 

and �� > 0) and negative for � = 1. Together with continuity of the first derivative, there must be at 

least one � ∈ (0, 1) that meets the first order condition. By defining �� = ��
��(1 − �) (or equivalently, 

�� = ���

����), we can reformulate the first order condition to 

���� ⋅ ��� −
1

ℎ�����
� = Δ�����

� (� + 1 − �) 

which is the formulation stated in Proposition 5. 

2.c. To calculate the second derivative, we use the reformulation above. Moreover, we write ��(�) to 

highlight that � is the decision variable and �� depends on �. 
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��

��� � ⋅ ����� ⋅ ��
��(1 − �) − Δ�����

� (� + 1 − �)�

=
�

��
 ���� ⋅ ���(�) −

1

ℎ� ���(�)�
� − Δ�����

� (� + 1 − �)

= ���� ⋅ �1 +
ℎ�′ ���(�)�

�ℎ� ���(�)��
�� ⋅

�
��

��(�) 

The second derivative is negative as the failure rate ℎ� is increasing and ��(�) is strictly decreasing in 

�. Consequently, the optimization problem is strictly concave. Together with our proof of existence 

(2.b.), we have shown that there is exactly one solution to our optimization model and it is well-defined 

by the first order condition. 

3. The remaining step of our proof is to show that the optimal solutions Δ��,�(�|�) to our ��,�(�) 

optimization problems constitute the unique optimal solution of our original optimization problem. This 

can be done by showing that price vector ��(�|�) with ��,�(�|�) = ∑ Δ��,�(�|�)�
���  is element of ℛ�(�) 

and actually has to be the unique optimal solution.  

For ��,�(�|�) = ∑ Δ��,�(�|�)�
��� ∈ ℛ�(�), we merely have to show that ���,�(�|�)

���� ≤ ���,���(�|�)
��  for every � <

��,�(�). This is equivalent to showing �� ≤ ����, � < ��,�(�), with the definition from 2.b. Recalling 

the optimality condition, it holds that  

0 = ���� ⋅ ��� −
1

ℎ�����
� − Δ�����

� (� + 1 − �) ≥ �� ⋅ ��� −
1

ℎ�����
� − Δ�����

� (� + 1 − �)

≥ �� ⋅ ��� −
1

ℎ�����
� − Δ�����

� (� − �). 

The first inequality follows by � ∈ [0, 1] and �� − �
������

≥ 0, the second by concavity of ����
� (�) in �. 

So far, we have shown that the first derivative for � + 1 is nonpositive at ��. As the first derivative 

increases in �, it must hold that ���� ≥ �� for some ���� that meets the optimality condition for � + 1. 
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The uniqueness shown in 2.c. carries over to the solution of our original problem. This can be proven 

by contradiction: We assume that there is another price vector � ∈ ℛ�(�) that leads to an equally good 

or better solution of our original problem Then we can disassemble this price vector in ��,�(�) marginal 

prices Δ�� = �� − ����. Together with the argumentation presented in 1., this would imply the sum of the 

objective functions would be equally good or better than the sum of the optimal objective values. This 

would be a contradiction to the uniqueness or the optimality, respectively, of the optimal solution of at 

least one of these optimization problems. 

S.4 Definition of Lemma S1 and its proof 

We can confirm that the statements regarding the expected additional revenue for selling the � + 1th 

unit we established in Lemma 2 (Section 4.1) also hold in Section 4.2 with observable consumption 

indicator and unobservable base willingness-to-pay. Analogue to Section 4.1, we define ��(�) =

max
���∈��,�����

��1 − �� � ���

������ ⋅ �Δ�� − Δ�����
� (� + 1 − �)�� and state 

Lemma S1  If � ∈ �0, �����, it holds that: 

a) ����(�) − ��(�) ≤ 0 

b) ����(�) − ��(�) is increasing in � 

c) ��(�) is decreasing in � 

Proof: This proof follows the exact same steps and the same intentions as proof of Lemma 2. The only 

thing that changes is the math.  

a): ��(�) is the optimal value of max
���∈��,�����

��1 − �� � ���

������ ⋅ �Δ�� − Δ�����
� (� + 1 − �)�� =

max
��∈[�,�]

��1 − ������� ⋅ ��� ⋅ (�)��� − ��� = �1 − �� ���(�)�� ⋅ ���(�) ⋅ ���� − �� with ��(�) 

representing the optimal solution. As ����(�) (the optimal solution of ����(�)) is suboptimal for ��(�) 

and 1 − �� �����(�)� ≥ 0 as well as ����(�) ≤ 1, it holds that 

��(�) = max
��∈[�,�]

��1 − ������� ⋅ ��� ⋅ (�)��� − ��� ≥ �1 − �� �����(�)�� ⋅ �����(�) ⋅ ���� − ��

≥ �1 − �� �����(�)�� ⋅ �����(�) ⋅ �� − �� = ����(�) 
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b) and c): In a first step, we prove c) by formulating the first derivative of ��(�) with regard to � and 

observing its nonpositivity. In a second step we prove b) by applying the formulation of our first step.  

Based on its implicit definition ���� ⋅ ��� − �
������

� = � (cf. Proposition 5), the optimal solution ��(�) 

of ��(�) depends also on �. As we are about to vary �, we highlight this fact by writing ��(�) instead 

of ��(�) (� acts as a parameter in this proof). The same applies for ����(�) and ����(�). Building the 

first derivative, we get 

�
��

��(�) =
�

�� ��1 − �� ���(�)�� ⋅ ���(�) ⋅ ���� − ���

= −�� ���(�)� ⋅
�

��
���(�)� ⋅ ���(�) ⋅ ���� − �� + �1 − �� ���(�)��

⋅ ����� ⋅
�

�� ���� − 1�

=
�

��
���(�)� ⋅ �� ���(�)� ⋅ ����� ⋅ �

1

ℎ� ���(�)�
− ��(�)� + ��

− �1 − �� ���(�)�� = − �1 − �� ���(�)�� ≤ 0. 

The last equation holds because of the implicit definition of ��(�).  

After showing c), we make use of the formulation above. Please note, that replacing � by � + 1 does not 

change the argumentation. It immediately follows that �
��

����(�) = − �1 − �� ���(�)��. Combining 

the first derivative of ��(�) and ����(�) leads to 

�
��

�����(�) − ��(�)� = �� �����(�)� − �� ���(�)�. 

Recalling the argumentation while developing Proposition 5, we know that ����(�) ≥ ��(�). Hence, 

we can conclude that �
��

�����(�) − ��(�)� ≥ 0.      □ 

Remark S1  By definition, it holds that �������� = 0 with �������� = 1. Although not exactly stated, 

we assumed � < ���� in proof of Lemma S1. However, all statements also hold for � ≥ ����. 

S.5 Proof of Proposition 6 

��
�(⋅) is obviously increasing as it is never harmful to have more capacity. We show concavity by 

induction: 

� = 1:  
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With Lemma S1, it holds 

Δ���
�(� + 1|�) − Δ���

 �(�|�) = ����(0) − ��(0) ≤ 0. 

Subsequently, it also holds  

Δ���
�(� + 1) − Δ���

�(�) = � Δ���
�(� + 1|�) − Δ���

 �(�|�) ⋅ ��(�) �� ≤ 0
�

�

 

� ↷ � + 1:  

In the induction step, we first show that Δ�����
� (� + 1|�) − Δ�����

 � (�|�) ≤ 0 and conclude that 

Δ�����
� (� + 1) − Δ�����

 � (�) ≤ 0 holds as well. We also recall Remark 4 which says that ����,���(�) ≤

����,�(�) ≤ ����,���(�) + 1. This translates to the following four cases (with � = ����,���(�) to 

shorten notation): 

a) � = ����,�(�) = ����,���(�) 

b) � = ����,�(�) = ����,���(�) − 1 

c) � = ����,�(�) − 1 = ����,���(�) − 1 

d) � = ����,�(�) − 1 = ����,���(�) − 2 
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Δ�����
� (� + 1|�) − Δ�����

 � (�|�) = ����
� (� + 1|�) − 2����

 � (�|�) + ����
 � (� − 1|�)

= ��
�(� + 1|�) − 2��

 �(�|�) + ��
 �(� − 1|�) + � �� �Δ���

�(� + 2 − �)�

����,���(�)

���

− 2

⋅ � �� �Δ���
�(� + 1 − �)�

����,�(�)

���

+ � �� �Δ���
�(� − �)�

�

���

= Δ���
�(�) − Δ���

�(� − 1) + �� �Δ���
�(�)� − �� �Δ���

�(� − 1)�

+ ���� �Δ���
�(� − �)� ⋅ 1�������,���(�)��� − ���� �Δ���

�(� − �)�

⋅ 1�������,�(�)��� + ���� �Δ���
�(� − �)� ⋅ 1�������,�(�)�

− ���� �Δ���
�(� + 1 − �)� ⋅ 1�������,���(�)�

+ � ������ �Δ���
�(� + 1 − �)� − �� �Δ���

�(� + 1 − �)��
���

���

− ����� �Δ���
�(� − �)� − �� �Δ���

�(� − �)���

+ ������ �Δ���
�(� + 1 − �)� − �� �Δ���

�(� + 1 − �)��

− ����� �Δ���
�(� − �)� − �� �Δ���

�(� − �)��� 

With Lemma S1 b), it holds that  

Δ�����
� (� + 1|�) − Δ�����

 � (�|�)

≤ Δ���
�(�) − Δ���

�(� − 1) + �� �Δ���
�(�)� − �� �Δ���

�(� − 1)�

+ ������ �Δ���
�(� + 1 − �)� − �� �Δ���

�(� + 1 − �)��

− ����� �Δ���
�(� − �)� − �� �Δ���

�(� − �)��� + ���� �Δ���
�(� − �)�

⋅ 1�������,���(�)��� − ���� �Δ���
�(� − �)� ⋅ 1�������,�(�)���

+ ���� �Δ���
�(� − �)� ⋅ 1�������,�(�)� − ���� �Δ���

�(� + 1 − �)� ⋅ 1�������,���(�)� 
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To proof Δ�����
� (� + 1|�) − Δ�����

� (�|�) ≤ 0, we look at aforementioned cases a) – d). In each of the 

four cases, the first step is to replace the characteristic functions 1{⋅} by 0 and 1. 

a) � = ����,�(�) = ����,���(�): 

Δ�����
� (� + 1|�) − Δ�����

 � (�|�)

≤ Δ���
�(�) − Δ���

�(� − 1) + �� �Δ���
�(�)� − �� �Δ���

�(� − 1)�

+ ������ �Δ���
�(� + 1 − �)� − �� �Δ���

�(� + 1 − �)��

− ����� �Δ���
�(� − �)� − �� �Δ���

�(� − �)��� + ���� �Δ���
�(� − �)�

− ���� �Δ���
�(� + 1 − �)�

= Δ���
�(�) − Δ���

�(� − 1) + �� �Δ���
�(�)� − �� �Δ���

�(� − 1)�

+ �� �Δ���
�(� − �)� − �� �Δ���

�(� + 1 − �)�

≤ Δ���
�(�) − Δ���

�(� − 1) + �� �Δ���
�(�)� − �� �Δ���

�(� − 1)� 

Last inequality follows by Lemma S1 c). 

b) � = ����,�(�) = ����,���(�) − 1:  

Δ�����
� (� + 1|�) − Δ�����

 � (�|�)

≤ Δ���
�(�) − Δ���

�(� − 1) + �� �Δ���
�(�)� − �� �Δ���

�(� − 1)�

+ ������ �Δ���
�(� + 1 − �)� − �� �Δ���

�(� + 1 − �)��

− ����� �Δ���
�(� − �)� − �� �Δ���

�(� − �)��� + ���� �Δ���
�(� − �)�

≤ Δ���
�(�) − Δ���

�(� − 1) + �� �Δ���
�(�)� − �� �Δ���

�(� − 1)�

+ ���� �Δ���
�(� − �)�

= Δ���
�(�) − Δ���

�(� − 1) + �� �Δ���
�(�)� − �� �Δ���

�(� − 1)� 

The last inequality follows by Lemma S1 b) (together with Remark S1 as Δ���
�(� − �) ≥ �� 
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due to � = ����,�(�)). The last equality follows by Remark S1 which says that 

���� �Δ���
�(� − �)� = 0. 

c) � = ����,�(�) − 1 = ����,���(�) − 1 

Δ�����
� (� + 1|�) − Δ�����

 � (�|�)

≤ Δ���
�(�) − Δ���

�(� − 1) + �� �Δ���
�(�)� − �� �Δ���

�(� − 1)�

+ ������ �Δ���
�(� + 1 − �)� − �� �Δ���

�(� + 1 − �)��

− ����� �Δ���
�(� − �)� − �� �Δ���

�(� − �)��� − ���� �Δ���
�(� − �)�

≤ Δ���
�(�) − Δ���

�(� − 1) + �� �Δ���
�(�)� − �� �Δ���

�(� − 1)� 

The last inequality follows by Lemma S1 b) and the fact that �� �Δ���
�(� − 1)� ≥ 0. 

d) � = ����,�(�) − 1 = ����,���(�) − 2  

Δ�����
� (� + 1|�) − Δ�����

 � (�|�)

≤ Δ���
�(�) − Δ���

�(� − 1) + �� �Δ���
�(�)� − �� �Δ���

�(� − 1)�

+ ������ �Δ���
�(� + 1 − �)� − �� �Δ���

�(� + 1 − �)��

− ����� �Δ���
�(� − �)� − �� �Δ���

�(� − �)��� + ���� �Δ���
�(� − �)�

− ���� �Δ���
�(� − �)�

≤ Δ���
�(�) − Δ���

�(� − 1) + �� �Δ���
�(�)� − �� �Δ���

�(� − 1)� 

The last inequality follows by Lemma S1 a) and b). 

For each of the four cases, it holds that  

Δ�����
� (� + 1|�) − Δ�����

 � (�|�)

≤ Δ���
�(�) − Δ���

�(� − 1) + �� �Δ���
�(�)� − �� �Δ���

�(� − 1)� 
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By replacing the optimal solution �� �Δ���
�(� − 1)� of �� �Δ���

�(� − 1)� by the optimal solution 

�� �Δ���
�(�)� of �� �Δ���

�(�)�, we can show that  

Δ���
�(�) − Δ���

�(� − 1) + �� �Δ���
�(�)� − �� �Δ���

�(� − 1)�

≤ Δ���
�(�) − Δ���

�(� − 1) + �1 − �� ��� �Δ���
�(�)���

⋅ �Δ���
�(� − 1) − Δ���

�(�)� = �� ��� �Δ���
�(�)�� ⋅ �Δ���

�(�) − Δ���
�(� − 1)�

≤ 0 

where the last inequality is a result of the induction hypothesis. 

The final step is easily done:  

Δ�����
� (� + 1) − Δ�����

� (�) = ∫ Δ�����
� (� + 1|�) − Δ�����

� (�|�) ⋅ ��(�) ���
� ≤ 0.   □ 

S.6 Proof of Proposition 7 

a): We show Δ���
�(�) ≥ Δ�����

� (�) for every � ≥ 1: 

Δ���
�(�|�) = max

�∈ℛ�(�)
� � ��(�|�) ⋅ ��� − Δ�����

� (�)�

��,�(�)

���

�

− max
�∈ℛ���(�)

� � ��(�|�) ⋅ ��� − Δ�����
� (� − 1)�

��,���(�)

���

� + Δ�����
� (�)

≥ � ��(��(� − 1|�)|�) ⋅ �Δ�����
� (� − 1) − Δ�����

� (�)�

��,���(�)

���

+ Δ�����
� (�)

≥ Δ�����
� (�) 

The first inequality follows by suboptimality of ��(� − 1|�) in state  (�, �), the second by Proposition 6. 

Finally, Δ���
�(�) = ∫ Δ���

�(�|�) ⋅ ��(�) ���
� ≥ Δ�����

� (�). 

b): Obviously, ��
�(�) is increasing in � as it is never harmful to have more time to sell the remaining 

stock. Regarding concavity, it holds that 
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��
�(�|�) − ����

� (�|�)

= max
�∈ℛ�(�)

� � ��(�|�) ⋅ ��� − Δ�����
� (�)�

��,�(�)

���

�

− max
�∈ℛ�(�)

� � ��(�|�) ⋅ ��� − Δ�����
� (�)�

����,�(�)

���

� + ����
� (�) − ����

� (�)

≤ � ��(��(�|�)|�) ⋅ �Δ�����
� (�) − Δ�����

� (�)�

��,�(�)

���

+ ����
� (�) − ����

� (�)

≤ ����
� (�) − ����

� (�) 

The first inequality follows by suboptimality of ��(�|�) in state  (� − 1, �), the second by Proposition 

7a). Finally, ��
�(�) − ����

� (�) = ∫ ���
�(�|�) − ����

� (�|�)� ⋅ ��(�) ���
� ≤ ����

� (�) − ����
� (�).  □ 

S.7 Proof of Proposition 8 

��
�,�(⋅) is obviously increasing as it is never harmful to have more capacity. We show concavity by 

induction: 

� = 1:  

As ��
�,�(�|�, �) = � ⋅ ∑ �����

��� , it holds 

Δ���
�,�(� + 1|�, �) − Δ���

�,�(�|�, �) = � ⋅ �� − � ⋅ ���� ≤ 0. 

Subsequently, it also holds  

Δ���
�,�(� + 1) − Δ���

�,�(�)

= � � �Δ���
�,�(� + 1|�, �) − Δ���

�,�(�|�, �)� ⋅ ��(�) ⋅ ��(�) ��
�

�

�� ≤ 0
�

�

 

� ↷ � + 1:  

In the induction step, we consider four different cases regarding � = ����,�(�, �) (cf. Lemma 6): 

a) ����,���(�, �) = � = ����,���(�, �): 

Δ�����
�,�(� + 1|�, �) − Δ�����

�,�(�|�, �) = Δ���
�,�(� + 1) − Δ���

�,�(�) + ∑ �Δ���
�,�(� +�

���
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1 − �) − Δ���
�,�(� + 2 − �)� − ∑ �Δ���

�,�(� − �) − Δ���
�,�(� + 1 − �)��

��� = Δ���
�,�(� +

1 − �) − Δ���
�,�(� − �) ≤ 0  

b) ����,���(�, �) + 1 = � = ����,���(�, �) 

Δ�����
�,�(� + 1|�, �) − Δ�����

�,�(�|�, �) = Δ���
�,�(� + 1) − Δ���

�,�(�) + ∑ �Δ���
�,�(� +�

���

1 − �) − Δ���
�,�(� + 2 − �)� − ∑ �Δ���

�,�(� − �) − Δ���
�,�(� + 1 − �)����

��� − �� ⋅ ���� −

Δ���
�,�(� + 1 − �)� = Δ���

�,�(� + 1 − �) − � ⋅ ���� ≤ 0  

c) ����,���(�, �) = � = ����,���(�, �) − 1 

Δ�����
�,�(� + 1|�, �) − Δ�����

�,�(�|�, �) = Δ���
�,�(� + 1) − Δ���

�,�(�) + �� ⋅ �� −

Δ���
�,�(� + 1 − �)� + ∑ �Δ���

�,�(� + 1 − �) − Δ���
�,�(� + 2 − �)��

��� − ∑ �Δ���
�,�(� −�

���

�) − Δ���
�,�(� + 1 − �)� = � ⋅ �� − Δ���

�,�(� − �) < 0  

d) ����,���(�, �) + 1 = � = ����,���(�, �) − 1 

Δ�����
�,�(� + 1|�, �) − Δ�����

�,�(�|�, �) = Δ���
�,�(� + 1) − Δ���

�,�(�) + �� ⋅ �� −

Δ���
�,�(� + 1 − �)� + ∑ �Δ���

�,�(� + 1 − �) − Δ���
�,�(� + 2 − �)��

��� −

∑ �Δ���
�,�(� − �) − Δ���

�,�(� + 1 − �)����
��� − �� ⋅ ���� − Δ���

�,�(� + 1 − �)� = � ⋅ �� −

� ⋅ ���� ≤ 0  

The inequality of a), b), c), and d) follows by induction hypothesis, definition of ����,�(�, �), definition 

of ����,�(�, �), and � ∈ [0,1] respectively. 

Finally, for all four cases it holds 

Δ�����
�,�(� + 1) − Δ�����

�,�(�) = ∫ ∫ �Δ�����
�,�(� + 1|�, �) − Δ�����

�,�(�|�, �)� ⋅ ��(�) ⋅ ��(�) ���
� �� ≤�

�

0.             □ 

S.8 Proof of Proposition 9 

a) For �, � ≥ 1, it holds   

Δ�����
�,�(�|�, �) − Δ���

�,�(�) = ����
�,�(�|�, �) − ����

�,�(� − 1|�, �) − ��
�,�(�) + ��

�,�(� − 1)

= 1�����,���(�,�)�����,�(�,�)��� ⋅ �� ⋅ �����,�(�,�)�� − Δ���
�,� �� + 1 − ����,�(�, �)��

+ � �Δ���
�,�(� − �) − Δ���

�,�(� + 1 − �)�

����,���(�,�)

���

≥ 0. 
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The inequality follows by Lemma 5 and Proposition 8. The last step is given by Δ�����
�,�(�) −

Δ���
�,�(�) = ∫ ∫ �Δ�����

�,�(�|�, �) − Δ���
�,�(�)� ⋅ ��(�) ⋅ ��(�) ���

�  ���
� ≥ 0. 

b) There is no downside in having more time to sell remaining capacity. In the contrary, there is always 

a positive probability for earning additional revenues by having additional selling opportunities. Thus, 

value function ��
�,�(�) is increasing. Concavity, i.e. ����

�,�(�) − ��
�,�(�) ≤ ��

�,�(�) − ����
�,�(�) is given:  

����
�,�(�|�, �) − ��

�,�(�) − ��
�,�(�|�, �) + ����

�,�(�)

= � �� ⋅ ���� − Δ���
�,�(� + 1 − �)�

����,�(�,�)

���

− � �� ⋅ ���� − Δ�����
�,�(� + 1 − �)�

��,�(�,�)

���

= −1�����,�(�,�)���,�(�,�)� ⋅ � �� ⋅ ���� − Δ�����
�,�(� + 1 − �)�

��,�(�,�)

������,�(�,�)��

+ � �Δ�����
�,�(� + 1 − �) − Δ���

�,�(� + 1 − �)�

����,�(�,�)

���

≤ 0 

with ��,�(�, �) ≥ ����,�(�, �) as Δ���
�(� + 1 − �) ≤ Δ�����

� (� + 1 − �) (cf. part a) of this proposition). 

The inequality follows by Lemma 5 and again part a) of this proposition. Finally, ����
�,�(�) − 2��

�,�(�) +

����
�,�(�) = ∫ ∫ �����

�,�(�|�, �) − ��
�,�(�) − ��

�,�(�|�, �) + ����
�,�(�)� ⋅ ��(�) ⋅ ��(�) ���

�  ���
� ≤ 0. □ 

 


