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Abstract

Amid the rapid growth of online retail, last-mile delivery faces significant chal-
lenges, including the cost-effective delivery of goods to all customers. Accordingly,
the development and improvement of innovative approaches thrive in current
research. Our work contributes to this stream by applying dynamic pricing tech-
niques to effectively model the possible involvement of the crowd in fulfilling
delivery tasks. The use of occasional drivers (ODs) as a viable, cost-effective
alternative to traditional dedicated drivers (DDs) prompts the necessity to focus
on the inherent challenge posed by the uncertainty of ODs’ arrival times and
willingness to perform deliveries.
We introduce a dynamic programming framework that offers individualized bun-
dles of delivery task and compensation to ODs as they arrive. This model, akin to
a reversed form of dynamic pricing, accounts for ODs’ decision-making by treating
their acceptance thresholds as a random variable. Thereby, our model addresses
the dynamic and stochastic nature of OD availability and decision-making.
We analytically solve the stage-wise optimization problem, outline inherent
challenges such as the curses of dimensionality, and present structural prop-
erties. Designed to cope with these challenges, our approximation methods, a
parametric value function approximation and a fluid approximation, aim to accu-
rately determine avoided costs, which are a key factor in calculating optimal
compensation.
A comprehensive simulation study compares our algorithms with benchmark
strategies, and shows the advantages of dynamic compensation across a range of
scenarios. We conclude our work with managerial insights and a summary of our
findings, offering significant implications for last-mile delivery operations.
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1 Introduction

Fueled by the rapid growth of online retail and brick-and-mortar stores expanding
into online sales, last-mile delivery has become increasingly important in the logistics
sector. This trend has further accentuated the cost-intensive nature of urban trans-
portation operations, necessitating innovative approaches to mitigate these challenges.
One of these innovative approaches is the concept of using occasional drivers (ODs).
ODs are (in-store) customers or individuals willing to divert their planned route to
deliver online orders for monetary compensation. Thereby, they present a cost-effective
alternative to dedicated drivers (DDs), who are employed or contracted through a
third-party logistics provider. This OD approach, leveraging existing store traffic, offers
not only economic benefits (Archetti et al, 2016; Dayarian and Savelsbergh, 2020)
but also aids in reducing pollution and urban traffic, while enhancing community ties
(Buldeo Rai et al, 2018; Hutter and Neumann, 2023). However, the unpredictability
of ODs, influenced by factors like the frequency of store visits and their fluctuat-
ing willingness to undertake deliveries at that day, poses a significant challenge. This
uncertainty in OD availability, contrasts sharply with the reliability of DDs, who offer
a more predictable delivery solution, albeit at a higher operational cost. A key factor
influencing ODs’ willingness to participate is compensation, which effectively offsets
the additional effort and time ODs invest in fulfilling delivery tasks (Archetti et al,
2016; Qi et al, 2018).
While current implementations of similar concepts on platforms such as Walmart’s
”Spark” or Shopopop have demonstrated the practical feasibility, there remains a con-
siderable gap to bring out the intended potential of ODs. Specifically, current research
has mainly focused on deterministic models with fixed acceptance criteria for ODs
(Boysen et al, 2021), with little room for customized offers, while stochastic models
typically ignore the dynamic nature of ODs arrivals or the role of compensation in
decision-making (Savelsbergh and Ulmer, 2022).
Our research addresses these gaps by proposing a dynamic model that matches arriv-
ing ODs with delivery tasks. Each OD is offered a customized bundle, consisting of a
delivery task and a compensation. This customized offer considers ODs’ destination,
the remaining time, and the pool of potential future ODs. The acceptance threshold
of the OD is considered a random variable, reflecting the unpredictable nature of their
decision-making. Unassigned deliveries at the end of the planning horizon are man-
aged by DDs. This approach, akin to a reversed form of dynamic pricing, is detailed
in Figure 1 and offers a more realistic and effective solution for last-mile delivery sce-
narios.
This paper makes several significant contributions to the field of logistics, utilizing
dynamic pricing methodologies:
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Fig. 1 Dynamic programming process. This illustration depicts the sequential decision-making pro-
cess as ODs arrive over time. It focuses on the current state, emphasizing three critical elements: the
current OD, identified by their destination (represented by an arrow), potential future ODs, marked
by their respective destinations (represented by triangles), and open delivery tasks, characterized by
their delivery locations (represented by circles).

1. Introduction of the dynamic compensation problem for occasional
drivers: We propose a novel framework that accounts for the sequential arrival of
ODs and incorporates uncertainties related to their arrival and acceptance decisions
in Section 3.

2. Analytical solution to the stage-wise optimization problem: Utilizing a
Bellman equation, we solve the stage-wise optimization problem. Additionally,
Section 4 discusses the structural properties and challenges to find an optimal
policy, laying the foundation to develop appropriate approximation methods.

3. Development of advanced algorithms: In Section 5, we introduce sophisticated
algorithms for approximating the value function and determining optimal compen-
sation and delivery task policies for ODs. These include a parametric value function
approximation and a fluid approximation, each designed to adapt to the dynamic
nature of OD arrivals and reflect structural properties.

4. Comprehensive simulation study: Our algorithms are rigorously tested against
benchmark strategies in a detailed simulation study, as presented in Section 6. This
study not only validates our model but also offers valuable insights into the benefits
of dynamic compensation strategies under various urban configurations and OD
arrival patterns.

The paper is structured as follows: We begin with a literature review in Section 2. This
is followed by a formal problem description in Section 3, and an in-depth analysis of
the problem in Section 4. Our proposed solution approaches are detailed in Section 5,
and the results of our simulation study are presented in Section 6. We conclude with
a discussion of managerial insights and a summary of our key findings in Section 7.

2 Literature review

In the preceding discussion, we conceptualized an OD as an individual who may visit
the store (pickup location) and, if conditions align with their schedule, may under-
take a delivery task. An important element in our analysis is the unpredictability
associated with the arrival of ODs at the store and their decision to accept a task.
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We posit that compensations significantly influence ODs’ acceptance decision. Based
on this definition, we structure our literature review as follows.
Initially, in Section 2.1, we provide a concise overview of existing literature focused
on a deterministic framework, which do not explicitly anticipate uncertainties regard-
ing ODs’ arrival and task acceptance. Such studies have little in common with our
research focus. Moving forward to Section 2.2, our attention turns to scenarios where
the arrival and/or acceptance of ODs are stochastic. This section examines models
that accommodate the unpredictable behaviors of DS, regarding their arrival at the
pickup location or their decision to accept a delivery task. We specifically investi-
gate studies suggesting that these behaviors can be effectively influenced or altered
through the compensation strategies. This section of our review aligns more closely
with our study.

2.1 Deterministic models

This section is dedicated to deterministic models, concentrating on scenarios where
firms possess complete information about ODs, including their constraints such as
start and end locations, minimum compensation expectations, and time restrictions.
It assumes a constant willingness among ODs to accept delivery tasks if their speci-
fied constraints are met, with compensation determined by a predefined scheme.
A cornerstone in this domain is the work by Archetti et al (2016). Their model rep-
resents one of the first in this domain, assigning ODs to single delivery tasks within
a specified detour limit. This seminal study highlights the potential for cost savings
through crowdsourced delivery and emphasizes the importance of a structured com-
pensation scheme. It sets the stage for further research that introduces additional
layers of complexity.
Further research has built upon this initial model, integrating time-window constraints
and transshipment nodes (Chen et al, 2018; Macrina et al, 2020), individualized mini-
mum compensation thresholds (Dahle et al, 2019), multi-package delivery capabilities
(Chen et al, 2018; Boysen et al, 2022), and merging OD delivery with item-sharing
(Behrend et al, 2019). Further, Dai and Liu (2020) differentiates between part-time
and full-time ODs within these frameworks.
Diverging from fixed compensation schemes, several studies have explored models
wherein ODs propose their desired compensation, leaving firms to decide on these
proposals. Notable contributions in this area include works by Kafle et al (2017),
Allahviranloo and Baghestani (2019), Feng et al (2021), and Mancini and Gansterer
(2022). A notable instance is Le et al (2021), who developed an integrated routing
and matching approach featuring various compensation schemes, including those
aligning with ODs’ acceptance thresholds.
Some studies transition to a dynamic setting, albeit maintaining deterministic
assumptions by not forecasting future arrivals within the optimization process. This
dynamic approach typically employs a rolling horizon method, constantly updating
decisions. This approach is exemplified in the works of Allahviranloo and Baghestani
(2019), Arslan et al (2019), and Archetti et al (2021).
In conclusion, the deterministic literature demonstrates a clear trajectory towards
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enhanced complexity and adaptability. These models are progressively addressing
intricate operational demands, varying compensation strategies, and integrating
dynamic components while retaining a deterministic essence. This evolution lays a
solid foundation for exploring stochastic models, crucial for addressing the uncertain-
ties in more complex operational settings.

2.2 Stochastic models

This segment explores stochastic models that tackle the uncertainties surrounding
OD availability and their willingness to participate. This area is predominantly
characterized by two-stage problems, where tasks are initially assigned to ODs (first
stage), with the anticipation that some of these tasks may remain unfulfilled, requir-
ing alternative solutions, typically involving DDs (second stage). Additionally, several
studies focus on an assortment optimization framework, where firms decide on a selec-
tion of tasks to offer ODs to influence their participation decisions. Notably, there is
also research incorporating dynamic frameworks and, particularly intriguing, studies
where firms strategically determine compensations to influence ODs’ decisions.
Among the first in considering ODs’ acceptance uncertainty were Gdowska et al
(2018) who introduce a two-stage optimization model. In this model, tasks are ini-
tially assigned to ODs and DDs, including vehicle routing problem solutions, while
anticipating potential OD rejections. The chance of a rejection is thereby assumed
to be influenced by compensation. Tasks rejected by ODs are reassigned to DDs in
the second stage. Further two-stage models have been developed and extended in
various studies, including Mousavi et al (2022), which introduces mobile depots, Silva
and Pedroso (2022), and Barbosa et al (2023), where compensation decisions are
part of the first stage, influencing ODs’ availability. Torres et al (2022b) incorporate
time-windows, Torres et al (2022a) focus on specific OD destinations, while Silva
et al (2023b) and Silva et al (2023a) explore task-specific uncertainties and dynamic
arrivals of tasks and ODs, necessitating a dynamic recourse response.
In another research stream, assortment optimization is used to influence ODs’ deci-
sions. Mofidi and Pazour (2019) and Horner et al (2021) determine a set of delivery
tasks to present to ODs, who then signal their availability for specific tasks, with
the firm finalizing the assignment. Ausseil et al (2022) expand this approach to a
dynamic setting, accounting for the ongoing arrival of tasks and ODs.
Apart from Silva et al (2023a) and Ausseil et al (2022), Dayarian and Savelsbergh
(2020) also introduce a dynamic component. Here, tasks and ODs stochastically
arrive over time and are integrated into the optimization system. The study focuses
on optimal task assignments at each point in time, considering the uncertain future
arrivals of tasks and ODs.
The final category comprises research that employs compensation strategies to
enhance OD availability. These studies generally propose that offering higher com-
pensation can effectively increase OD availability. This relationship is explored in an
aggregated context, often without delving into the specifics of individual OD behav-
iors. Key contributions in this area include works by Cachon et al (2017), Kung and
Zhong (2017), Taylor (2018), Qi et al (2018), Yildiz and Savelsbergh (2019) and Cao
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et al (2020). Notably, Cao et al (2020) speculate on the potential for significant cost
reductions through an online compensation framework, particularly when combined
with their dynamic task assignment framework. This body of research underscores the
critical role of compensation as a lever for optimizing OD participation in last-mile
delivery operations.
In conclusion, the stochastic literature showcases an evolving landscape of methodolo-
gies and models that effectively engage the inherent uncertainties in OD participation.
Notably, several of these studies underscore the strategic use of compensation as a
crucial tool to influence and manage the stochastic availability of ODs, demonstrating
its critical role in optimizing delivery logistics.

2.3 Literature review summary

The compensation framework emerges as a critical facet in leveraging ODs within var-
ious models, as delineated in several studies (e.g., Le et al, 2021; Gdowska et al, 2018).
These frameworks typically employ compensation strategies to manage OD availabil-
ity effectively (e.g., Barbosa et al, 2023; Qi et al, 2018). Moreover, some research (e.g.,
Arslan et al, 2019; Ausseil et al, 2022) introduce dynamic elements to more accurately
mirror OD arrival volatility. However, a comprehensive model that combines these ele-
ments is notably absent. Current literature lacks a framework where ODs dynamically
and stochastically arrive, exhibit decision-making influenced by variable compensa-
tion offers, and where an optimization system enables firms to set dynamic, individual
compensations that adjust over time based on the system’s current state. This gap mir-
rors familiar concepts in revenue management and dynamic pricing. Addressing this,
our research aims to bridge this void in crowdshipping literature by applying dynamic
pricing methodologies. Our research aspires to fill this gap within the crowdshipping
domain by applying dynamic pricing methodologies, envisaging a reversed pricing
mechanism wherein firms propose compensatory offers to secure delivery services.

3 The dynamic compensation problem for
occasional drivers

In this section, we present the model along, with the corresponding notation and
underlying assumptions.

3.1 General setting and notation

Our analysis focuses on a retailer that operates both a brick-and-mortar store and an
online shop. At the commencement of store operations, all online orders scheduled for
fulfillment on that day are predetermined and known. We assume the retailer possesses
the flexibility to assign any online order for delivery to a fleet of DDs, who operate
as a homogeneous group. The time horizon is modeled as a set of discrete periods
T = {1, 2, ..., T + 1}, whereas in each period t ∈ T \ {T + 1} at most one OD may
arrive. We denote the set of delivery locations as C ⊆ {1, 2, . . . , C} and the set of
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ODs’ destinations as O ⊆ {C + 1, C + 2, . . . , C +O}, where C and O are the number
of total delivery locations and ODs, respectively. In period t, the remaining delivery
locations are given by Ct, while Ot contains the destinations of all ODs who may still
arrive. Index 0 is exclusively used to refer to the depot location. The distances between
locations are denoted by duv ∀ u, v ∈ C∪O∪{0}, building the foundation for calculating
the detour of an OD o to a delivery location c: uoc = dco+d0c−d0o∀o ∈ O, c ∈ C. Upon
their arrival, ODs are recognized by the retailer, making ODs’ destinations exploitable
information. The retailer decides on a compensation/delivery location combination to
offer to the OD. This offer is either accepted or declined by the OD. On acceptance, the
OD receives the compensation and delivers the parcel to the delivery location. When
declining the offer, the OD departs without taking on a delivery task. At the terminal
period T +1, all delivery tasks that have not been served by ODs are served by DDs.

3.2 Formulation as a dynamic program

The remaining problem description will be structured by the essential components of
a dynamic program in line with Powell (2011).

3.2.1 Periods

If each time period t ∈ T is chosen to be sufficiently small, the likelihood of experienc-
ing two OD arrivals within the same period becomes negligible. This practice aligns
with established conventions in standard revenue management literature (Strauss
et al, 2018). For an OD o ∈ O, the probability of arrival is denoted as λot for
all t ∈ T \ {T + 1}. The probability of no arrival in period t is represented by
λ0t = 1 −

∑
o∈O λot, indicating that

∑
o∈O λot + λ0t = 1. To maintain generality in

the formulation, the probability of OD arrival may vary for each OD and could also
depend on t.

3.2.2 States

The progression through each period involves three primary types of states: pre-
arrival (SA

t ), pre-decision (SX
t ), and post-decision state (SP

t ). Each state structure
varies, encapsulating information specific to its context. A visual representation of the
dynamic program is illustrated in Figure 2 as a decision tree, where circles represent
random nodes, and squares denote decision nodes.

1. Pre-arrival states SA
t contain information about potential OD arrivals, denoted as

Ot, and unassigned delivery tasks, denoted as Ct. Formally, SA
t = (Ot, Ct). The

pre-arrival state transitions into the pre-decision state with the arrival of an OD in
period t. If no OD arrives during the pre-arrival state in period t, the subsequent
states are skipped, and the next state becomes the pre-arrival state of period t+1.

2. Pre-decision states SX
t include all information from the preceding pre-arrival state

and the specific OD arrival, denoted as ot, in period t. In mathematical terms,
SX
t = (Ot, Ct, ot). With the knowledge of OD ot arriving, the firm must decide on

the offer bundle (c, r), comprising a delivery task c ∈ Ct and a compensation r
(refer to 3.2.4).
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3. Post-decision states SP
t encompass all information from the preceding pre-decision

state and the bundle (c, r) offered to OD ot, i.e., S
P
t = (Ot, Ct, ot, c, r). After OD ot

makes a decision, the state transitions into the pre-arrival state of the next period
by updating Ot and Ct accordingly, based on the OD’s decision.

The transition from states over periods t is terminated when period T + 1 is reached.
For a comprehensive description of the transition function see 3.2.3.

pre-arrival state pre-decision state post-decision state

Fig. 2 Tree representation of the Dynamic Program. Circles represent states in which the transition
is determined by a random process, while squares represent states in which the subsequent state is
determined deterministically by the firms decision

3.2.3 Transitions

We move through states within a period and from one period t to the next, inte-
grating new information as the scenario evolves. Transitioning from pre-arrival to
pre-decision state involves a stochastic process, where additional information is based
on the stochastic arrival of up to one OD ot ∈ Ot. The transition from pre-decision
to post-decision state is deterministic, dependent on the firm’s decision. Moving from
post-decision to pre-arrival state in the subsequent period follows a stochastic process,
reflecting the OD’s unknown decision regarding the firm’s offer. Specifically, OD ot is
excluded from Ot, assuming departed ODs don’t return within the considered horizon.
This mirrors their behavior as non-employed individuals who complete their shopping
in one visit and return only when supplies are depleted. Furthermore, based on OD ot
accepting or rejecting the offered task c, c is either removed from or retained in Ct.
In summary, the transition from one period to another can be characterized by:
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SA
t+1 =


(Ot \ {ot}, Ct \ {ct}) if OD ot arrives and serves delivery location ct

(Ot \ {ot}, Ct) if OD ot arrives and rejects the offer

(Ot, Ct) if no OD arrives in t

(1)

3.2.4 The firm’s decisions

The decision space, denoted as X = (XC ,XR), represents the entire collection of all
possible decisions and depends on the current pre-decision state SX

t . Consequently,
we write X (SX

t ) = (XC(S
X
t ),XR(S

X
t )). A decision is represented as (c, r) ∈ X (SX

t ),
where c denotes a delivery location, and r indicates the compensation paid to the
OD for fulfilling this delivery. In our framework, we assume that the firm offers at
most one delivery location at a time, eliminating the need to consider trunk space or
weight limitations. This assumption emphasizes that occasional drivers are viewed as
opportunistic individuals rather than employed personnel, reflecting their preference
for minimal commitment. Additionally, we do not impose further limitations on offers,
making XC(S

X
t ) equivalent to the most general case, Ct. XR(S

X
t ) can be modeled as

either a discrete set or a continuous range of possible compensations. In our work, we
allow for the most general case, where XR(S

X
t ) = R+.

3.2.5 The OD’s decision

Each OD possesses a unique indifference compensation (IC), which marks the min-
imum compensation that leads to accepting a delivery task to a specified delivery
location. The prevailing trend in existing literature often assumes or implicitly sug-
gests, that the ICs of ODs are known to the firm. In an effort to deviate from this
trend, a crucial step is to establish a suitable representation of the IC. In our study,
we propose that the IC is influenced by two factors: one encompasses observable infor-
mation (such as detour, traffic, parking availability at the delivery location, weather,
etc.), expressed as aoct indicating the monetary compensation required for known
inconveniences; the other involves unobservable information (like the OD’s time con-
straints and mood on a specific day), represented by the random variable ω, denoting
the additional (unknown) amount required to persuade the OD to accept today’s offer.
Formally, it holds that

ICoct = aoct + ω. (2)
We assume that ω follows a continuous distribution with positive support on [0, boct],
characterized by its cumulative distribution function denoted as F and its probability
density function as f . While the choice of distribution is flexible and may vary across
ODs, delivery locations, and periods (although we don’t explicitly specify this by using
foct), we restrict ourselves to a specific class of distributions characterized by the
condition that f/F is decreasing1. This condition ensures that our decision problem
has a unique solution (refer to Proposition 1). Notably, every distribution with a
decreasing f satisfies this criterion. Furthermore, this condition is akin to requiring

1We use decreasing/increasing and lower/higher in a weak sense.
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that the reflected distribution, given by f̄(x) = f(−x) over the support [−boct, 0],
exhibits an increasing failure rate h̄(x) = f̄(x)/(1− F̄ (x)).
Adopting the assumption of an increasing failure rate aligns with common practices
in dynamic pricing literature. Random variables exhibiting increasing failure rates
have a growing generalized failure rate, as discussed in Lariviere (2006). This choice
is consistent with one of the three standard assumptions outlined in Ziya et al (2004).
Furthermore, it is compatible with numerous probability distributions, including but
not limited to the uniform, triangular, normal, exponential, Weibull, Gumbel, gamma
distributions, and their truncated variants (some of them with restrictions regarding
parameter choice) as documented in Banciu and Mirchandani (2013). Each of these
distributions can serve as f̄ , further extending the possibilities for the selection of f .

3.2.6 Cost of delivery by DDs

As recommended, among others, by Boysen et al (2022), a common approach to mod-
eling delivery costs by DDs is to assume a fixed fee, denoted as κc, for delivering to
any remaining delivery location c ∈ CT+1. Consequently, the total costs are computed
using Θ(CT+1) =

∑
c∈CT+1

κc. This assumption aligns with the established business
practice of third-party logistics providers such as DHL and UPS, which typically
charge a flat rate per package delivered. For retailers without a dedicated delivery fleet
or those opting to outsource deliveries, this cost structure is commonly encountered.
Importantly, this assumption eliminates the need for route building, allowing us to
concentrate on identifying optimal task offers and corresponding compensations. How-
ever, it’s worth noting that our proposed framework is not contingent on a fixed fee,
providing flexibility in structuring cost evaluations at the end of the planning horizon.

3.3 The Bellman equation

The objective is to minimize the total expected costs, denoted as V1(O1, C1). Costs
are incurred by fulfilling all delivery tasks c ∈ C1 = C, either by employing DDs or
leveraging the potential arrivals of ODs o ∈ O1 = O. Consequently, they consist of
all compensations paid to ODs during the planning horizon t = 1, . . . , T and to DDs
at the end of the planning horizon t = T + 1 for all remaining delivery tasks CT+1.
Given the dynamic nature of this decision problem, we formulate it through a Bellman
equation. The expected costs in a pre-arrival state SA

t = (Ot, Ct) with remaining ODs
Ot and remaining delivery tasks Ct can be represented as follows:

Vt(Ot, Ct) = Eo[min(c,r)∈X (Ot,Ct,o){F (r − aoct) · (r + Vt+1(Ot \ {o}, Ct \ {c}))
+ (1− F (r − aoct)) · Vt+1(Ot \ {o}, Ct)}]

(3)

with the boundary condition VT+1(S
A
T+1) = Θ(CT+1). The expectation Eo covers all

potential arrivals of ODs o ∈ Ot as well as the event of no arrival. In the latter case,
the firm has no decision to make and faces expected future costs of Vt+1(Ot, Ct).
To minimize expected costs, our approach involves a unified decision-making process
following the arrival of OD o. This entails the dual determination of selecting the
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delivery task c presented to OD o and simultaneously deciding on the compensation
r offered for completing this task. The computation of expected costs for any given
combination of o, c, and r considers two distinct outcomes: the OD’s acceptance of the
proposed bundle, consisting of the delivery task and compensation, or their rejection.
Acceptance incurs immediate costs r and future expected costs Vt+1(Ot \{o}, Ct \{c})
for delivering the remaining tasks contained in Ct \{c}, with potential assistance from
the remaining ODs given in Ot \{o}. Conversely, rejection has no immediate costs but
leads to future expected costs Vt+1(Ot \ {o}, Ct) for fulfilling all deliveries in Ct with
potential ODs from Ot \ {o}. Notably, OD o accepts the offered bundle if and only if
her indifference compensation ICoct = aoct + ω is below the offered compensation r.
By offering a bundle (c, r) to OD o, the firm hopes to reduce expected costs. Conse-
quently, the firm avoids offers with r > Vt+1(Ot \ {o}, Ct) − Vt+1(Ot \ {o}, Ct \ {c}).
We define

∆Vt(Ot, Ct, o, c) = Vt+1(Ot \ {o}, Ct)− Vt+1(Ot \ {o}, Ct \ {c}) (4)

as avoided costs, representing the difference between the expected costs of the next
period’s pre-arrival states with and without the offered delivery location c. Further-
more, based on avoided costs, we define expected savings from offering the bundle
(c, r) to OD o as:

Savt(Ot, Ct, o, c, r) = F (r − aoct) · (∆Vt(Ot, Ct, o, c)− r). (5)

With expected savings, we formulate an equivalent decision problem to the one inte-
grated in (3). The following decision problem highlights the importance of avoided
costs in our decision-making process and will be a cornerstone for our analysis of the
problem and the creation of solution methods. It holds that

min(c,r)∈X (Ot,Ct,o){F (r − aoct) · (r + Vt+1(Ot \ {o}, Ct \ {c}))
+ (1− F (r − aoct)) · Vt+1(Ot \ {o}, Ct)}

= min(c,r)∈X (Ot,Ct,o){Vt+1(Ot \ {o}, Ct)− F (r − aoct) · (∆Vt(Ot, Ct, o, c)− r))

= Vt+1(Ot \ {o}, Ct)−max(c,r)∈X (Ot,Ct,o){Savt(Ot, Ct, o, c, r)}

(6)

Equation (6) demonstrates that maximizing expected savings is equivalent to mini-
mizing expected costs, as Vt+1(Ot \ {o}, Ct) is independent of the decisions. In the
remainder of this work, we focus on finding the optimal bundle (c(ot), r(ot)) for OD
ot that maximizes expected savings in a given pre-decision state SX

t = (Ot, Ct, ot):

max(c,r)∈X (Ot,Ct,ot){Savt(Ot, Ct, ot, c, r)} (7)

Observing the decision problem posed by equation (7), we encounter two crucial ques-
tions: First, does a unique optimal solution exist for every state, and can we effectively
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determine it? Second, if we can identify the optimal solution, is this sufficient to effi-
ciently minimize the total expected costs V1(O1, C1) throughout the entire planning
horizon?
The first question is addressed in Section 4, where we establish the uniqueness of the
optimal solution and provide a sufficient optimality condition for any state. However,
the second question demands more nuanced consideration: By solving the decision
problem for each pre-decision state SP

t = (Ot, Ct, ot) in period t, we can compute
the expected costs associated with every pre-arrival state SA

t = (Ot, Ct) in the same
period (refer to equations (3) and (6)). This process, in turn, yields the avoided costs
∆Vt−1(Ot−1, Ct−1, ot−1, c) for each pre-decision state SP

t−1 = (Ot−1, Ct−1, ot−1). By
iteratively applying this methodology, we aim to minimize the total expected costs
V1(O1, C1). However, the sheer volume of potential pre-arrival and pre-decision states
over the entire planning horizon grows exponentially, rendering a conventional roll-
back procedure practically infeasible, even for relatively modest instances.
Indeed, this dynamic problem is afflicted by the ”curses of dimensionality” (refer to
Powell (2011)). Without constraining the number of states through rules, the cardi-
nality of |SAt | becomes 2C+O in each period t. This prompts the need for a method
that provides an approximation of the value function Vt(Ot, Ct) or the avoided costs
∆Vt(Ot, Ct, o, c). We address this issue in Section 5.

4 Optimal solution and structural properties

In the first part of this section, we establish the existence of a unique solution to our
decision problem outlined in equation (7). Additionally, we derive the optimal solu-
tion, showcasing its closed-form expression in the event of a uniformly distributed ω.
Moving on to the second part of this section, we delve into an analysis of structural
properties. We aim to glean insights into the model’s inherent characteristics, improv-
ing our capability to adequately approximate the value function or avoided costs in
Section 5.

4.1 Optimal state-dependent solution

In this section, we operate within an arbitrary pre-decision state SX
t = (Ot, Ct, o),

aiming to identify the optimal offer bundle (c(o), r(o)) ∈ X (Ot, Ct, o) that maximizes
7. Our exploration begins by focusing on a fixed delivery task c ∈ Ct, and subsequently
determining the optimal compensation r based on the interplay between OD o and
the chosen delivery task c.
Proposition 1. In a pre-decision state SX

t = (Ot, Ct, o), with a given c ∈ Ct, there is
a unique r ∈ [aoct, boct+aoct] that maximizes Savt(Ot, Ct, ot, c, r). This r either fulfills

r + F (r−aoct)
f(r−aoct)

= ∆Vt(Ot, Ct, o, c) or is on the bounds of [aoct, boct + aoct].

Proof. Since f has positive support on [0, boct], F (r − aoct) establishes a bijective
function for r ∈ [aoct, boct + aoct]. Consequently, we can introduce θ = F (r − aoct) as
an alternative decision variable, where uniqueness carries over between the optimal
r and the optimal θ. Utilizing θ offers the advantage that the second derivative is
independent of ∆Vt(Ot, Ct, o, c), allowing us to generally prove the concavity of the
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savings function in θ. With equation (5) and r(θ) = F−1(θ) + aoct, we can formulate
the first derivative of the savings function:

d

dθ
Savt(Ot, Ct, o, c, r(θ)) = (∆Vt(Ot, Ct, o, c)− F−1(θ)− aoct)−

θ

f(F−1(θ))

= (∆Vt(Ot, Ct, o, c)− r(θ))− F (r(θ)− aoct)

f(r(θ)− aoct)
.

(8)

The second derivative is expressed as:

d2

dθ2
Savt(Ot, Ct, o, c, r(θ)) = −

d

dθ
r(θ)(1 +

d

dr

F (r − aoct)

f(r − aoct)
|r=r(θ)). (9)

Given that r(θ) is increasing with θ and F (r−aoct)
f(r−aoct)

is increasing with r (as indicated in

Section 3.2.5), the second derivative is negative. Consequently, the savings function is
(strictly) concave in θ. This leads to the existence of a unique θ ∈ [0, 1] that maximizes
the savings function for a given c. This uniqueness also extends to r ∈ [aoct, boct +
aoct].

Remark 1. With a uniformly distributed ω, i.e., ω ∼ U[0,boct], the optimal compen-
sation r for a given pre-decision state SX

t = (Ot, Ct, o) and a given delivery location
c ∈ Ct can be derived by the following closed-form expression:

r =


aoct if ∆Vt(Ot, Ct, o, c) ≤ aoct
∆Vt(Ot, Ct, o, c) + aoct

2
if aoct < ∆Vt(Ot, Ct, o, c) < 2boct + aoct

boct + aoct if ∆ ≥ 2boct + aoct

(10)

Knowing the optimal compensation for a specific delivery location offers the advan-
tage of evaluating various combinations of delivery locations and their corresponding
optimal compensations to identify the most favorable combination. However, the com-
putational effort increases with the number of remaining delivery tasks, making it more
challenging to find the best delivery location. Fortunately, we can introduce a crite-
rion to simplify this process. To do so, we first need two lemmas to prepare ourselves
for demonstrating that this criterion indeed identifies the optimal delivery location.
Lemma 1. In a pre-decision state SX

t = (Ot, Ct, o), with c, c̃ ∈ Ct and corresponding
optimal compensations r, r̃, respectively, the following implication holds:

∆Vt(Ot, Ct, o, c)− aoct ≥ ∆Vt(Ot, Ct, o, c̃)− aoc̃t =⇒ F (r − aoct) ≥ F (r̃ − aoc̃t) (11)

Proof. Following a similar approach as in the proof of Proposition 1, we transition to
alternative decision variables θ = F (r−aoct) and θ̃ = F (r̃−aoc̃t). It is noteworthy that
θ and θ̃ are optimal solutions for their respective savings functions. Utilizing equation
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(8) and the optimality of θ, we derive that:

0 = (∆Vt(Ot, Ct, o, c)− aoct − F−1(θ))− θ

f(F−1(θ))

≥ (∆Vt(Ot, Ct, o, c̃)− aoc̃t − F−1(θ))− θ

f(F−1(θ))
.

(12)

This implies that θ is greater than or equal to the optimal solution for the savings
function with c̃, confirming θ ≥ θ̃. Consequently, F (r − aoct) ≥ F (r̃ − aoc̃t).

Lemma 1 indicates that our optimal solution is selected in a manner where delivery
locations exhibiting a larger difference between avoided costs and known inconve-
niences are paired with an optimal compensation that yields a higher probability
of acceptance from the OD. The subsequent Lemma 2 conveys a related concept,
emphasizing a higher realized saving rather than a higher probability.
Lemma 2. In a pre-decision state SX

t = (Ot, Ct, o), with c, c̃ ∈ Ct and corresponding
optimal compensations r, r̃, respectively, the following implication holds:

∆Vt(Ot, Ct, o, c)− aoct ≥ ∆Vt(Ot, Ct, o, c̃)− aoc̃t

=⇒ ∆Vt(Ot, Ct, o, c)− r ≥ ∆Vt(Ot, Ct, o, c̃)− r̃
(13)

Proof. We set r̂ = r + ∆Vt(Ot, Ct, o, c̃) − ∆Vt(Ot, Ct, o, c) and check whether this
compensation is below or above the optimal compensation r̃. Utilizing Proposition 1,
we observe:

∆Vt(Ot, Ct, o, c̃)− r̂ − F (r̂ − aoc̃t)

f(r̂ − aoc̃t)

= ∆Vt(Ot, Ct, o, c)− r − F (r +∆Vt(Ot, Ct, o, c̃)−∆Vt(Ot, Ct, o, c)− aoc̃t)

f(r +∆Vt(Ot, Ct, o, c̃)−∆Vt(Ot, Ct, o, c)− aoc̃t)

≥ ∆Vt(Ot, Ct, o, c)− r − F (r − aoct)

f(r − aoct)
= 0.

(14)

The inequality arises from ∆Vt(Ot, Ct, o, c̃) −∆Vt(Ot, Ct, o, c) − aoc̃t ≤ −aoct and the
observation that f(x)/F (x) is decreasing with x (as discussed in Section 3.2.5). The
final equality is a consequence of the optimality of r for c. This implies that r̂ is greater
than or equal to r̃. Consequently, r̃ ≤ r̂ = r+∆Vt(Ot, Ct, o, c̃)−∆Vt(Ot, Ct, o, c), thus
affirming the assertion of Lemma 2.

Lemma 1 and Lemma 2 together carry a significant implication: A delivery location
with a higher difference between avoided costs and known inconvenience results in
an optimal compensation providing a higher probability of acceptance from the OD
and greater realized savings in case of acceptance. This directly leads to the following
proposition.
Proposition 2. In a pre-decision state SX

t = (Ot, Ct, o), c(o) =
argmaxc∈Ct

{∆Vt(Ot, Ct, o, c)− aoct} is the optimal delivery location to offer to OD o.
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Proof. The proof immediately follows by Lemmas 1 and 2, in conjunction with
the definition of the savings function (refer to equation (5)). By definition,
∆Vt(Ot, Ct, o, c(o)) − aoc(o)t ≥ ∆Vt(Ot, Ct, o, c̃) − aoc̃t for any c̃ ∈ Ct. Moreover,
according to Proposition 1, let r and r̃ be the optimal compensation for c(o) and c̃,
respectively. Then,

Savt(Ot, Ct, o, c(o), r) = F (r − aoc(o)t) · (∆Vt(Ot, Ct, o, c(o))− r)

≥ F (r̃ − aoc̃t) · (∆Vt(Ot, Ct, o, c̃)− r̃) = Savt(Ot, Ct, o, c̃, r̃).
(15)

Proposition 2 provides a simple criterion for determining the optimal delivery loca-
tion. Given that Ct is discrete, aoct is a parameter, and ∆Vt(Ot, Ct, o, c) is derived from
the expected costs in the subsequent period t + 1 through the earlier step of a roll-
back procedure, identifying the maximizer becomes a straightforward task. Following
the identification of the optimal delivery location, the corresponding optimal compen-
sation can be obtained using Proposition 1. These propositions collectively provide
an immediate solution to determining the optimal offer bundle (c(o), r(o)) in a given
pre-decision state SX

t = (Ot, Ct, o). The primary challenge lies in the computation
of each ∆Vt(Ot, Ct, o, c), considering these avoided costs depend on Vt+1(Ot+1, Ct+1)
for every possible subsequent pre-arrival state. The number of potential states grows
exponentially with C and O, rendering the calculation of each instance beforehand a
daunting task. Hence, there arises a necessity to approximate the value function or
the avoided costs in an efficient manner. To minimize structural or systematic errors,
our goal is to devise an approximation mechanism that faithfully captures the inher-
ent structure of the value function and the avoided costs. Consequently, we delve into
the identification of such structural properties in the subsequent section.

4.2 Structural properties

We commence our investigation into the structural properties by scrutinizing the
monotonicities of the value function. Specifically, we draw inspiration from fre-
quently observed structures in the realm of dynamic pricing, where concave-increasing
expected revenues in remaining time and capacity are common. In our context, we will
demonstrate that our objective function exhibits a similar monotonic increasing/de-
creasing behavior. Moreover, we will highlight the distinctive feature of our setting,
where we typically do not observe a concave or convex behavior, setting it apart from
standard dynamic pricing scenarios.
Initially, we establish that expected costs increase with Ct and with t, while they
decrease with Ot.
Proposition 3. For any pre-arrival state SX

t = (Ot, Ct), it holds:

1. Vt(Ot, C̃t) ≤ Vt(Ot, Ct) with C̃t ⊂ Ct
2. Vt(Õt, Ct) ≥ Vt(Ot, Ct) with Õt ⊂ Ot

3. Vt(Ot, Ct) ≤ Vt+1(Ot, Ct) with t ≤ T and time-homogeneous arrivals
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Proof. We will prove each statement individually. To establish the validity of the first
and second statements, it is sufficient to demonstrate the assertions for any subsets
C̃t ⊂ Ct and Õt ⊂ Ot, where Ct \ C̃t = {c̃t} and Ot \ Õt = {õt} for any c̃t and
õt, respectively. By consistently applying the arguments outlined below for the first
and second statements, we can verify the more general assertion of the proposition.
We will establish the validity of the first two statements through induction over t.
The statements are evidently true for the base case with t = T + 1, as Vt(Ot, C̃t) =∑

c∈C̃t
κc ≤

∑
c∈C̃t

κc + κc̃t = Vt(Ot, Ct), Vt(Ot, Ct) =
∑

c∈Ct
κc = Vt(Õt, Ct), allowing

us to focus on the induction step.

1. Induction step, t+ 1→ t:
We examine two pre-arrival states (Ot, C̃t) and (Ot, Ct). Both states contain the
same set of remaining ODs, giving rise to related pre-decision states (Ot, C̃t, o) and
(Ot, Ct, o), respectively, with identical arrival probabilities λot. In the following, we
will prove that the expected costs associated with the pre-decision states (Ot, C̃t, o)
are lower than the expected costs stemming from (Ot, Ct, o) for any o ∈ Ot. Let
(c(o), r(o)) denote the optimal offer bundle in any pre-decision state (Ot, Ct, o).
Now, we manipulate the policy in the pre-decision states (Ot, C̃t, o). Instead of
applying the optimal policy, we offer (c(o), r(o)) if c(o) ̸= c̃, and (c, 0) for an arbi-
trary c ∈ Ct if c(o) = c̃. Through the subsequent case analysis, we demonstrate that
even with this suboptimal policy, we can still achieve lower expected costs origi-
nating from the state (Ot, C̃t, o) for any o ∈ Ot, implying expected costs in (Ot, C̃t)
are lower than in (Ot, Ct).
Two cases can apply:
Case 1: If we encounter an OD o with c(o) ̸= c̃, we have the same immediate
costs transitioning from both states (Ot, C̃t, o) and (Ot, Ct, o) to the subsequent pre-
arrival states. However, our induction hypothesis reveals that the expected future
costs from the subsequent pre-arrival states are lower for (Ot \ {o}, C̃t \ {c(o)})
and (Ot \ {o}, C̃t) compared to (Ot \ {o}, Ct \ {c(o)}) and (Ot \ {o}, Ct), respec-
tively. Therefore, in this case, the expected costs are lower for the pre-decision state
(Ot, C̃t, o) than for (Ot, Ct, o).
Case 2:. If we encounter an OD o with c(o) = c̃, there are no immediate costs
when transitioning from (Ot, C̃t, o) to (Ot \ {o}, C̃t). Conversely, transitioning from
(Ot, Ct, o), leads to two possibilities: either incurring immediate costs by transi-
tioning to (Ot \ {o}, Ct \ {c̃}), or incurring no immediate costs by transitioning to
(Ot\{o}, Ct). In the first scenario, both pre-decision states (Ot, C̃t, o) and (Ot, Ct, o)
result in the same subsequent pre-arrival state (Ot \ {o}, C̃t). However, the latter
transition involves immediate costs. In the second scenario, both transitions are free
of immediate costs, but transitioning from (Ot, Ct, o) results in a subsequent pre-
arrival state with higher expected future costs than transitioning from (Ot, C̃t, o),
as indicated by our induction hypothesis.

2. Induction step, t+ 1→ t:
We analyze two pre-arrival states, namely (Õt, Ct) and (Ot, Ct). It is noteworthy
that, in this scenario, the arrival of o ∈ Õt is equally likely in both states. How-
ever, the arrival of õ can only occur in the state (Ot, Ct). Therefore, based on our
assumptions, we have λõt + λ0t = λ̃0t, where λ0t and λ̃0t represent the no-arrival
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probability of ODs in the states (Ot, Ct) and (Õt, Ct), respectively.
Let (c̃(o), r̃(o)) denote the optimal offer bundle in any pre-decision state (Õt, Ct, o).
Now, we manipulate the policy in the pre-decision states (Ot, Ct, o). Instead of
applying the optimal policy, we offer (c̃(o), r̃(o)) when OD o ∈ Õt arrives, and (c, 0)
for an arbitrary c ∈ Ct when OD õ arrives.
With this suboptimal policy, we constructed a scenario in which pre-decision states
(Õt, Ct, o) and (Ot, Ct, o) transition with the same immediate costs and probabil-
ities to subsequent pre-arrival states, for each o ∈ Õt, leading to expected future
costs that are higher for the subsequent state of (Õt, Ct, o) than for the subsequent
state of (Ot, Ct, o). In the absence of any OD or the arrival of OD õ, both pre-
decision states transition without any immediate costs to subsequent pre-arrival
states, where (Õt, Ct, o) once again finds itself in a subsequent state with higher
expected future costs than its counterpart.

3. This proof diverges from the induction approach, relying instead on policy manip-
ulation across the entire planning horizon. To begin, it is crucial to highlight that
both pre-arrival states share an identical set of remaining ODs. Consequently, any
OD o has the same probability of arriving in either state. Moreover, both states
encompass the same remaining delivery locations. The sole distinction lies in the
time period: while Vt(Ot, Ct) has T +1− t periods left to acquire ODs, Vt+1(Ot, Ct)
has only T − t periods left.
Let πt′ , with t + 1 ≤ t′ ≤ T , represent the optimal policy employed to compute
Vt+1(Ot, Ct), where πt′ maps a pre-decision state in t′ with a bundle (c, r). We
proceed to replicate this policy to calculate expected costs for (Ot, Ct) in period t.
Therefore, we apply the policy πt′ in period t′ − 1 for every t + 1 ≤ t′ ≤ T . This
ensures that we encounter the same immediate costs and undergo identical tran-
sitions, regardless of whether we initiate the process in t or t + 1. Nevertheless,
commencing in t provides an extra period after the planning horizon, allowing us
to further minimize expected costs when starting from t instead of t+ 1.

Besides monotonicities in the value function, an often observed pattern in dynamic
pricing is that additional capacity and time have a diminishing effect with every addi-
tional unit, i.e. the value function is concave in these state variables. We will now show
that there is no concave/convex structure present in our setting. Specifically, we will
show that avoided costs do not generally increase/decrease with Ct, Ot, or t.
Proposition 4. For any pre-decision state SX

t = (Ot, Ct, o), it holds:

1. Neither ∆Vt(Ot, C̃t, o, c) ≤ ∆Vt(Ot, Ct, o, c) nor ∆Vt(Ot, C̃t, o, c) ≥ ∆Vt(Ot, Ct, o, c)
is generally true for C̃t ⊂ Ct

2. Neither ∆Vt(Õt, Ct, o, c) ≤ ∆Vt(Ot, Ct, o, c) nor ∆Vt(Õt, Ct, o, c) ≥ ∆Vt(Ot, Ct, o, c)
is generally true for Õt ⊂ Ot is not true

3. Neither ∆Vt(Ot, Ct, o, c) ≤ ∆Vt+1(Ot, Ct, o, c) nor ∆Vt(Ot, Ct, o, c) ≥
∆Vt+1(Ot, Ct, o, c) is generally true for t ≤ T

Proof. In order to validate the proposed propositions, we present counterexamples for
each, utilizing a specially designed instance as depicted in Figure 3. This instance
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is crafted to elucidate specific effects that invalidate potential monotonicities. While
maintaining consistent coordinates, we vary the arrival probabilities and the presence
of certain nodes across different scenarios.
A key element of our analysis focuses on the detours associated with various delivery
locations. Consider OD2, which is located at a distance r from the depot. It follows
that any delivery location situated on a circle centered at OD2 with radius r would
have a detour distance equivalent to its distance from the depot. Consequently, the
detour from OD2 to C1 is quantified as 3 units, and from OD2 to C2 as 8 units.
Additionally, we chose the location of OD3 along the orthogonal bisector of the line
connecting C1 and the depot. This geometric alignment ensures that the detour for a
path from OD3 to C1 is also 3 units. Furthermore, OD1 is strategically placed on the
direct line between C1 and the depot. This implies that the detour for OD1 involves
a double traversal of the segment between its location and C1, amounting to a total
detour distance of 3 units (twice the x-coordinate difference of OD1 from C1). The
detour values for each OD delivery location combination can be found in table 1. For
clarity, we introduce a conceptual dummy OD4, characterized by an infinitely long
detour to every delivery location and a guaranteed arrival in period 1. Throughout all
instances we assume a uniformly distributed ICoct which is independent of t and has
the bounds aoct = uoc and boct = 2. Every delivery location is associated with a cost
of κc = 10 if it is not served by an OD until the time horizon is over.

uoc C1 C2 C3
OD1 3 13.2 10.7
OD2 3 8 12
OD3 3 12.9 0

Table 1 Detour Matrix

1. In the first example, we analyze the change in avoided costs that occurs when adding
an OD to Ot in a fixed pre-decision state Vt(Ot, Ct, o, c). Specifically, we show that
the avoided costs ∆V1({1, 2, 4}, {1, 2}, 4, 1) increase when introducing OD3 while
the avoided costs ∆V1({1, 2, 4}, {1, 2}, 4, 2) decrease. The arrival probabilities for
the ODs are as follows: OD1 is certain to arrive in period 2 (probability of 1) with
no arrival probability in other periods. OD2 and OD3, when the latter exists, have
an arrival probability of 0.5 in periods 3 and 4. It is important to note that OD3
services no other delivery location than C1, as the lower bound of the IC for other
delivery locations lies above the threshold κc. This renders offering these to OD3
economically irrelevant for the firm. The introduction of OD3 increases the likeli-
hood of delivery location C1 being served in periods 3 or 4 due to the availability
of two potential ODs for this location, subsequently influencing the firm’s willing-
ness to spend on serving delivery location C1 in period 2 when OD1 arrives.
In Scenario 1, where OD3 is absent, the uncertainty of OD2’s arrival prompts the
firm to offer OD1 a compensation of 4.8125 in period 2 for serving C1, which is
accepted with a probability of 0.90625. This means that there is a high proba-
bility that delivery location C2 is the only one remaining to be serviced during
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Fig. 3 Graphical representation of the created example instance

the final two periods (3 and 4). Subsequently, should OD2 make an appearance
in either of these periods, the firm offers delivery location C2, coupled with a
compensation of 9. This offer has a 0.5 chance of acceptance. Consequently, the
overall serving probability for delivery location C2 in this case is calculated as
0.90625 · (1−0.52) ·0.5 ≈ 0.34. If OD1 declines the offer to serve C1 in period 2, C2
is left without the possibility of being served by an OD. This outcome stems from
the fact that the remaining driver, OD2, would face a significantly smaller detour
to serve location C1. Consequently, from an economic standpoint, it becomes more
beneficial for the firm to allocate OD2 to C1 rather than to C2. Building on the opti-
mal policy in periods 2 to 4, we can calculate the avoided costs in period 1, resulting
in ∆V1({1, 2, 4}, {1, 2}, 4, 2) ≈ 9.68, while ∆V1({1, 2, 4}, {1, 2}, 4, 1) ≈ 4.98. A tree
representation of this scenario can be seen in figure 4.
Scenario 2 introduces OD3, providing an additional viable option to serve deliv-
ery location C1 in later periods. This increased competition for serving deliv-
ery location C1, due to more service opportunities, leads to avoided costs of
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∆V1({1, 2, 3, 4}, {1, 2}, 4, 1) ≈ 4.62, a decrease compared to the avoided costs with-
out the additional driver, OD3. The firm, therefore, reduces the amount it is willing
to spend on serving C1 in early periods, which is reflected in a compensation of
4.125 for OD1 on arrival in period 2, leading to an acceptance probability of 0.5625.
This decreased acceptance probability ultimately also reduces the total probability
of delivery location C2 being served: Under this scenario, delivery location C2 is
served in two cases. First, if OD1 accepts the offer for serving C1 in period 2 and
subsequently, OD2 arrives in a later period to serve delivery location C2 (proba-
bility of occurrence: 0.5625 · (1 − 0.52) · 0.5 ≈ 0.211). Second, if OD1 declines the
offer, followed by OD3’s arrival in period 3, coupled with the acceptance of serv-
ing C1, and OD2’s arrival in period 4 to serve delivery location C2 (probability of
occurrence: (1− 0.5625) · 0.5 · 1 · 0.5 · 0.5 ≈ 0.0547). This results in a total serving
probability for delivery location C2 of approximately 0.266 in Scenario 2, explain-
ing why the avoided costs for delivery location C2 increase to 9.74 with the addition
of OD 3, while the avoided costs for C1 decrease to 4.62. A tree representation of
this scenario can be seen in figure 5.

Fig. 4 Tree diagram of the example instance of Example 1 (without the additional OD)

2. In the second example, we analyze the change in avoided costs that occurs when
adding a delivery location to Ct in a fixed pre-decision state Vt(Ct,Ot, o, c). Specif-
ically, we show that the avoided costs ∆V1({1, 2, 3, 4}, {1, 2}, 4, 1) increase when
introducing delivery location 3, while the avoided costs ∆V1({1, 2, 3, 4}, {1, 2}, 4, 2)
decrease. Considering that the scenario without the existence of delivery location
C3 has been addressed previously (refer to 1., scenario 2, where the avoided costs
for C1 and C2 were 4.62 and 9.74, respectively), we will focus our attention directly
on the scenario where delivery location C3 is included.
By comparing this new scenario with the first scenario from the previous exam-
ple (where C3 and OD3 are absent), we observe notable similarities leading to the
same avoided costs for delivery location C1 and C2. These similarities arise from
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Fig. 5 Tree diagram of the example instance of Example 1 (with the additional OD)

the unique association between OD3 and C3, both situated in the same location.
As a result, OD3 is consistently offered delivery location C3 for a compensation of
2 upon arrival, an offer that is accepted with a probability of 1. This arrangement
effectively isolates OD3 to delivery location C3, as he becomes irrelevant for other
nodes due to the strong match with delivery location C3. In the absence of delivery
location C3, OD3 would have been a potential service provider for delivery location
C1, resulting in the same effects already discussed in Scenario 2 of the previous
example.
The introduction of delivery location C3 and the consequent exclusive pairing with
OD3 reduces the competition for serving delivery location C1. This reduction in
competition leads to an increase in the avoided costs for delivery location C1, akin
to a scenario where neither OD3 nor delivery location C3 exists (refer to 1., scenario
1). Consequently, this alteration in the service landscape enhances the probability
of delivery location C2 being served, as OD1 now serves delivery location C1 with
a certainty of approximately 0.906 instead of only 0.5625 in the second period. As a
result of these shifts in service probabilities and competition dynamics, the avoided
costs for delivery location C2 decrease, aligning back to approximately 9.68, as
observed in the scenario without OD3 and C3. Analogously, the avoided costs for
C1 increase, returning to approximately 4.98. A tree diagram with the effect can
be seen in figure 6. To simplify, the choices illustrated in the pre-decision states
(represented as squares) have been reduced to only the optimal choices.

3. In the third example, we analyze the effect of decreasing the remaining time until
the store closes. For this we hold the pre-decision state Vt(Ct,Ot, o, c) fixed and
observe how ∆Vt({2, 3, 4}, {1, 2}, 4, c) changes with t for each c.
In this scenario, avoided costs can increase and decrease with period t. This example
is set within a framework of only three periods, excluding OD1 and delivery location
C3 for clarity. To facilitate a comparison of avoided costs across stages, dummy
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Fig. 6 Tree diagram of the example instance of Example 2 (with the additional delivery location)

OD4 might arrive in periods 1 and 2 respectively. The arrival probabilities are
defined as follows: OD2 has a probability of 0.5 in periods 2 and 3, while OD3’s
probabilities are 0.1 in period 2 and 0.5 in period 3.
Notably, the avoided costs for delivery location C2 in period 1 are relatively high at
9.975. This outcome arises from the only viable service scenario for delivery location
C2: OD3 must arrive in period 2, which occurs with a probability of 0.1. Upon
arrival, OD3 is presented with an offer to serve C1, which he accepts with certainty
(probability of 1), due to the compensation of 5. Following this, OD2’s arrival in
period 3 (with a probability of 0.5) is necessary. OD2 must then accept an offer of
9 to serve C2 (which occurs with a probability of 0.5). The cumulative probability
of these events leading to the service of C2 is calculated as 0.1 · 1 · 0.5 · 0.5 = 0.025.
This implies that there’s a 2.5% chance for this sequence to unfold, resulting in a
cost saving of 1 for serving C2 under these specific conditions. Advancing to the
next period without altering the state renders it impossible for delivery location C2
to be served in the next period, as both ODs are offered delivery location C1 upon
their arrival in period 3. As a result, the avoided costs for serving delivery location
C2 increase to 10 in period 2.
The avoided costs for delivery location C1 in period 1 amount to 5.35, reflecting
primarily the immediate benefit of eliminating the need to serve C1 in later states.
A portion of these avoided costs, although smaller, is attributed to the enhanced
potential of serving C2 in the last two periods 3 and 4, assuming C1 has been
serviced already. Moving on to period 2, we observe a decline of C1’s avoided costs
to 5.25. This decline is primarily due to the reduced opportunity for serving C2 in
absence of C1, given the diminishing time frame. With only period 4 remaining,
the probability and, consequently, the strategic value of serving C2 decrease. A tree
diagram with the effect can be seen in figure 7.
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Fig. 7 Tree diagram of the example instance of Example 3 (progressing t)

Proposition 4 underscores the complexity and context-specific nature of making oper-
ational decisions. This complexity arises because the value of avoided costs does not
have a simple relationship with the state variables such as the available delivery loca-
tions, the remaining ODs, and the number of periods yet to come. The valuation is
influenced by a multitude of factors, including but not limited to, the spatial dis-
tribution of locations, the timing and sequence of ODs, and the direct and indirect
relationship between various delivery locations and ODs. As such, reducing state vari-
ables does not straightforwardly lead to higher or lower avoided costs, but instead,
the impact is contingent on the interplay of various factors at that moment in time.

5 Solution methods

In this Section, we develop two algorithms that are used to approximate the avoided
costs ∆Vt(S

X
t , c), associated with the costs that are avoided by removing a single

delivery location c from the pre-arrival state of the next period. The first algorithm
employs parametric value function approximation (VFA), rendering it a learning-based
approach suitable for a broad spectrum of IC distributions discussed in section 3. The
second algorithm, in contrast, adopts a fluid approximation (FA). It demonstrates
effective predictive capabilities particularly when the IC follows a uniform distribution.
Both algorithms have undergone rigorous testing in the simulation study outlined in
Section 6.
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5.1 Parametric value function approximation

We propose a parametric VFA utilizing basis functions to effectively approximate
avoided costs. The objective is to map a state S to a corresponding value x ∈ R using
a VFA. As the exact value of the state S is computationally impractical to deter-
mine, a parametric VFA approximates the state by employing a linear combination
of features, also known as basis functions. These basis functions are scaled by a set
of parameters, commonly referred to as weights, which are learned during a dedi-
cated learning phase. Once the learning phase concludes, the approximated value of
the state S can be computed by building the linear combination of basis functions.
To be effective, the basis functions must encapsulate sufficient information about the
state for reliable predictions regarding its true value. The challenge lies in identifying
a set of functions that adequately represent the structure of all states. The advantage
of employing a parametric value function approximation is the ability to leverage the
inherent structure of the state. This not only facilitates efficient memory usage but
also results in shorter computation times.
Based on the analytical insights discussed in Section 4.1, we are primarily interested
in the estimation of avoided costs. This estimation can be approached through two
viable methods. The first method involves estimating the value functions as an initial
step, followed by the calculation of avoided costs based on these estimations. The sec-
ond method bypasses the preliminary estimation of value functions, focusing directly
on estimating the avoided costs themselves. In our VFA, we found the latter approach
more suitable.

5.1.1 The basis functions

Selecting appropriate basis functions is crucial for the effective learning of meaningful
weights and achieving a robust estimation of the avoided costs. In Section 4.2, we
observed that avoided costs result from a complex interplay of various factors. Among
these factors were the spatial distribution of delivery locations and the destinations of
ODs. Moreover, we found that the dynamics and arrival probabilities of ODs play a
significant role. Motivated by these insights, we define our basis functions to capture
the availability of ODs, while the weights are later designed to accurately reflect the
relationship between delivery locations and ODs.
For each remaining OD and for every period within the planning horizon, a specific
basis function is dedicated to reflect the total arrival probability of this OD over the
remaining horizon. Specifically, we define the basis functions as

ϕo(t) = PArrival(o, t+ 1). (16)

While the basis function is not dependent on the delivery location c, our selection of
weights, denoted by η, ensures that a distinct weight, denoted by ηoc, corresponds to
each combination of a delivery location c and an OD o. Combining basis functions,
weights, and the end-of-horizon delivery fee κc results in our formulation of estimated
avoided costs:
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∆V t(S
A
t , õ, c|η) = κc −

∑
o∈O\{õ}

ηoc · ϕo(t). (17)

It’s important to note that õ in this context refers to the OD that arrived in the pre-
decision state SX

t . These formulations of estimated avoided costs and basis functions
ensure that the avoided costs in the last period equal κc, accurately reflecting the real
avoided costs and thereby avoiding systematical errors.

5.1.2 Iterative learning-phase

The set of weights is initialized with an initial belief, denoted as η0. To evaluate the
current set of weights ηn in iteration n, the entire arrival process is simulated a total
of Q times. Decisions are made throughout the simulation based on the current set of
weights. After completing Q simulation runs, a regression model is employed to update
the weights, aiming at a better alignment with observed costs. Updated weights ηn+1

are subsequently evaluated in iteration n+1, until the final iteration N ends with the
final set of weights.
During a single simulation run, the avoided costs for each delivery location c are com-
puted using the current set of weights ηn and the relevant basis functions ϕo(t) (which
depend on the remaining ODs and the current period), in accordance with equation
(17). Subsequently, the optimal delivery location to offer in state SX

t can be deter-
mined with c∗ = argmaxc∈XC(SX

t ){∆Vt(S
X
t , c|ηt)− aoct}, as outlined in Proposition 2.

Following the optimality condition provided in Proposition 1, the optimal compensa-
tion r∗ can be efficiently determined using numerical methods.
After each simulation run q, a cost is associated with each delivery location. This cost
is either κc for locations not served by an OD, or the compensation paid to an OD o
for the delivery to location c. Other crucial aspects for accurately updating the weights
are the period during which a delivery location is served, the specific OD who served
c, and the remaining ODs at that state. The service period is either the one in which
the OD accepted the delivery location or T + 1 if the location was not served by an
OD during that run.
To incorporate this comprehensive data into our subsequent regression model, we
introduce additional notations:

• Let rqct denote the costs observed for delivery location c during simulation run q at
period t, and calculate the total costs across all simulations as r̄ct =

∑
q∈Q rqct.

• Let hqct denote an auxiliary variable that is 1 if delivery location c was served in
period t in a simulation run q. The total number of servings of c in t during one
iteration is denoted by h̄ct =

∑
q∈Q hqct. In instances where delivery location c is

not served in a particular run, h̄cT+1 is increased by 1.
• Let τqc denote the period in which delivery location c was served during simulation
run q.

• Let Oqt denote the set of remaining ODs in run q and period t.
• Let oqt denote the OD who arrived in run q at period t.

To update the weights for a better alignment with the observed costs afterQ simulation
runs, we introduce the following regression model, inspired by a similar regression
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model that has been used by Koch and Klein (2020) in the context of dynamic pricing
in attended home delivery.

min 0.5 ·
Q∑

q=1

∑
c∈C

ϵ2qc (18)

s.t. ϵqc =

∑T+1
t=τqc+1 r̄ct∑T+1
t=τqc+1 h̄ct

− κc +
∑

o′∈Oqτqc\{oqc}

ηoc · ϕo(τqc) ∀ q ∈ {1, ..., Q}, c ∈ C

(19)

ϵqc ∈ R ∀ q ∈ {1, ..., Q}, c ∈ C
(20)

ηoc ≥ 0 ∀ o ∈ O, c ∈ C
(21)

The regression model, as outlined in (18)-(21), treats the weights ηoc as decision vari-
ables. These weights are optimized to minimize the squared error between observed
and predicted costs (refer to (19)). This minimization process ensures that the esti-
mated costs align closely with actual outcomes.
After conducting Q simulation runs with a fixed set of weights, the regression model
is employed to align the weights with the current observations. In the subsequent iter-
ation, the updated weights are used in place of the previous weights to achieve a more
accurate approximation of the avoided costs. This procedure iterates N times to pro-
gressively obtain improved weights. Following the Nth iteration, the current weights
are applied to approximate the avoided costs in an online scenario.
A higher value of Q provides more information on the efficacy of our set of weights
ηn. However, higher values of Q also extend the completion time of the learning pro-
cess. Similarly, higher values of N entail more evaluations of η, while also increasing
the learning time.

5.1.3 Interpretation of the weights and the relationship to the
basis functions

In Section 4.2, we discussed the complex relationship between delivery locations and
ODs. This relationship is effectively captured by the set of weights η, where an often
observed effect in our numerical study was the strong linkage between a detour (an
OD had to make for serving a delivery location) and the assigned weight. Particularly,
a smaller detour usually resulted in a higher weight, emphasizing the cost-reducing
nature of ODs who encounter only a small detour while serving a delivery location.
Furthermore, these weights also reflect the presence or absence of other ODs who
share a similar effectiveness in serving the same delivery location. Our algorithm learns
from instances where multiple ODs frequently visit certain delivery locations, and it
adjusts the weights accordingly. Usually, this leads to a decrease of the corresponding
weights, highlighting the increased competition in serving this delivery location and
the reduced reliance on only a few ODs.
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Our basis functions, defined as the remaining arrival probabilities of ODs, reflect
the importance of specific OD availability, outlined in Section 4.2. Additionally, they
ensure that the last period is associated with avoided costs of κc. This is a desirable
feature as it correctly captures that no further savings can be made by waiting for
another OD to arrive, and it thereby avoids to be burdened with systematical errors.
Lastly, the structure of the approximated avoided costs mimics the structure of the
true avoided costs. To show that, we utilize an example instance where coordinates
are randomly selected from integers ranging between 0 and 10. The parameters set for
this analysis include T = 20, κc = 10 ∀c, and depot coordinates at (5, 5). The IC is
uniformly distributed with bounds a = 0.5uoc + 1 and b = 0.5uoc + 2 and the arrival
probabilities are 0.1 in each period for each OD. In our graphical analysis, shown in
Figure 8, the avoided costs over time are depicted on the left with the underlying
instance coordinates on the right. On the left graph, the darker lines represent the
true avoided costs calculated through a recursive computation with full enumeration.
In contrast, the lighter lines indicate the approximated avoided costs derived from the
VFA algorithm, which underwent 12 iterations with 2000 runs each. Extensive compu-
tational studies have revealed a ”normal” structure of the avoided costs, which we aim
to mimic through the VFA. This ”normal” pattern typically shows an increasing trend
over time. By selecting basis functions that progressively decrease with the remaining
probability of arrival, our approximate avoided costs successfully mimic this normal
structure.
However, our example and the proof of Proposition 4 illustrate that the structure of
the true avoided costs can deviate from the norm. This deviation is particularly evi-
dent at delivery location 1, where the avoided costs tend to increase at a decreasing
rate. The graph illustrates that for most parts, the structure of the true avoided costs
is well captured by our VFA. This is especially clear for delivery locations 3 and 4.
While the true avoided costs at delivery location 4 exhibit a slight deviation towards
the end of the observed time horizon, the overall structure aligns well with that of
the approximated avoided costs. The same holds for delivery location 3. Although the
approximation does not perfectly mirror the true avoided costs, it proves to be a valu-
able tool. After a brief learning phase, it can be applied in an online operation to offer
adequate compensations for emerging ODs, regardless of the instance’s coordinates’
structure.
In essence, our decision to utilize VFA for estimating avoided costs in each state is
founded on its ability to capture relationships between delivery locations and ODs,
account for the presence of competition, ensure desirable properties at the last period,
and maintain structural congruence with observed data in smaller instances. These
factors collectively make VFA an effective tool within our analytical framework. Con-
sequently, we will test this approach in our numerical study in Section 6 and compare
its performance with the performance of other mechanisms.

5.2 Fluid approximation

In this subsection, we introduce an algorithm that utilizes a substitute program to
approximate the avoided costs ∆Vt(S

X
t , c). The procedure involves solving a simpli-

fied version of the Bellman equation. In this simplified version, the remaining time
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Fig. 8 The graph on the left compares the avoided costs and the approximate avoided costs in an
instance with 5 ODs and 5 delivery locations. The brighter lines represent the approximate avoided
costs, while the darker lines depict the true avoided costs calculated by full enumeration. The different
line types depict the different delivery locations, which are to be served from the full set of delivery
locations. The right graph shows the instance’s coordinates

Algorithm 1 trainBasisFunctions()

Require: C,O, T, λo, N,Q
Initialize weights ηoc ← 0 ∀ o, c
for n ∈ {0, ..., N}: do

r̂ct, ĥct ← 0 ∀ o, t
for q ∈ {1, ..., Q}: do

rqct, hqct, τqc, Oqt, oqc ← received by Q simulation runs with weights ηn
r̂ct ← r̂ct + rqct∀ c, t

ĥct ← ĥct + hqct∀ c, t
end for
Update ηoc values by calculating (18)-(21) with r̂ct, ĥct, τqc, oqc and Oqt

end for
return ηoc ∀ o, c

horizon is condensed to a single period and probabilities are represented by continu-
ous fractions of the corresponding events. This adjustment allows ODs to both arrive
and serve multiple delivery locations partially. As a consequence, the optimization
model adopts a deterministic and continuous nature, which is why it is often referred
to as fluid approximation (FA) (see, e.g., Maglaras and Meissner, 2006). The FA for
approximating Vt(Ot, Ct) is given by:
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V̄ C
t (Ot, Ct) = min

roc

∑
c∈Ct

∑
o∈Ot

PAr(o) · PAc(o, c, roc) · roc

+
∑
c∈Ct

(
1−

∑
o∈Ot

PAr(o) · PAc(o, c, roc)

)
· κc (22)

s.t.
∑
o∈Ot

PAr(o) · PAc(o, c, roc) ≤ 1 ∀c ∈ Ct (23)

∑
c∈Ct

PAc(o, c, roc) ≤ 1 ∀o ∈ Ot (24)

roc ≥ 0 ∀c ∈ Ct, o ∈ Ot (25)

The parameter PAr(o) models the fraction of OD o that arrives within the remain-
ing time, designed to resemble the corresponding arrival probability. Consequently,
PAr(o) can be substituted with 1−P(o does not arrive) = 1−(1−λo)

T+1−t, assuming
the arrival probability of o is independent of the arrival of other ODs and time-
homogeneous. When the arrival probabilities are time-heterogeneous, PAr(o) can be

calculated by 1−
∏T

s=t(1− λos). The function PAc(o, c, roc) represents the fraction of
OD o that serves delivery location c for compensation roc. This function mirrors the
acceptance probability of OD o and can be substituted by FICoct(roc − aoct). When
applying the continuous uniform distribution with lower bound greater than 0, the
model transforms into a quadratic program and can be solved efficiently with stan-
dard algorithms. The decision variable roc denotes the compensation offered to OD
o for serving delivery location c. Given that the model does not determine a specific
pairing of delivery locations with ODs, this variable is established for each possible
OD-delivery location pair. The objective function (22) aims to minimize the approx-
imate expected costs for the remaining time horizon. The first term represents the
expected compensations paid to ODs. The second term accounts for the expected costs
of serving the delivery locations remaining at T + 1. Constraint (23) ensures that the
demand of a customer cannot be over-served. Constraint (24) limits an OD o to a total
delivery of one, summing up all (fractional) deliveries to different delivery locations.
Constraint (25) allows only non-negative compensations.
The avoided costs of serving delivery location c in state SX

t can be approximated
using different methods. One variation, proposed by Bertsimas and Popescu (2003),
involves calculating the difference of the expected costs via the FA with and without
delivery location c:

∆V̄ FA
t (SX

t , c) = V̄ FA
t+1 (Ot \ {o}, Ct)− V̄ FA

t+1 (Ot \ {o}, Ct \ {c}) . (26)

However, a drawback of this method is that to calculate the avoided costs of a spe-
cific delivery location, the FA substitute program needs to be solved separately for
each delivery location. This significantly increases the computational effort, especially
when dealing with a large number of potential delivery locations.
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Another method, which requires only one solution of the FA to obtain an approxi-
mation of the avoided costs for all remaining delivery locations, is to utilize shadow
prices. These shadow prices represent the optimal variables of the dual problem cor-
responding to (22) - (25). Particularly valuable are the shadow prices associated with
constraints (23). In this application, the values of the shadow prices can be interpreted
as the extent to which the retailer prioritizes assigning the associated delivery loca-
tion to OD’s destinations. delivery locations that are separated from the OD’s direct
routes from the depot tend to incur higher supply costs. In the optimal solution of the
FA, the constraints of these delivery locations are associated with a shadow price of 0
since constraint (23) is not binding. These customers can be assigned avoided costs of
∆V̄ SP

t (SX
t , c) = κc. The delivery locations for which the constraint is indeed binding

have positive shadow prices associated with them. The approximate avoided costs of
these delivery locations are

∆V̄ SP
t (SX

t , c) = κc − ζc. (27)

Here, ζc represents the shadow price of constraint (23) associated with delivery location
c.
The inputs of (22) - (25) are subsetsO′ ⊆ Ot and C′ ⊆ Ct. Instead of utilizing the entire
set of ODs and delivery locations as the input for the FA, one might opt for a subset
of the mentioned sets. This approach offers the advantage of reducing the complexity
of the optimization problem and eliminating redundancy. In the next subsection, we
present a straightforward method for dividing the complete set of remaining ODs and
delivery locations into a more manageable subset, while retaining relevant knowledge.

5.2.1 Generation of relevant subsets

It is improbable that an arriving OD o is willing to make a detour to delivery locations,
resulting in unreasonably long detours. At least, unless the vendor does not provide
an unreasonably high compensation, which renders the offer unprofitable. We reduce
computational complexity by excluding delivery locations and ODs that are likely to
never be affected by the absence of OD o and the offered delivery location c. This is
particularly crucial when calculating the approximated avoided costs with equation
(26). When using the shadow prices, calculating (22)-(25) once suffices to compute the
avoided costs for all delivery locations. As a result, the need for complexity reduction
is less pronounced in the latter approach.
In Proposition 4 and its proof, we have discussed the complex interplay between dif-
ferent ODs and delivery locations. Besides the immediate effect ODs and delivery
locations may exert on each other, we also have observed the indirect impact the pres-
ence of a specific OD or delivery location can have on others, showcasing a competition
effect. Therefore, we opted not to base these subsets solely on the detour distance to a
specific OD, as such an approach could overlook ODs that, despite not being in close
proximity to the delivery location, are nonetheless willing to serve it in the absence of
better alternatives. For clarity, we introduce the notation cio(C) for the delivery loca-
tion for which OD o has the ith shortest detour among all delivery locations in C.
When deciding on the delivery location to offer during a pre-decision state, the
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subset of relevant ODs O′ and relevant delivery locations C′ is created by iden-
tifying neighboring sets of ODs’ destinations and delivery locations. For this, we
define the set of neighboring OD destinations of a delivery location c as the sub-
set O′(O, C, c) = {o′ ∈ O| c1o′(C) = c}. This set can be described as the set of all
OD destinations, that have delivery location c as their shortest detour delivery loca-
tion. The set of neighboring delivery locations of a delivery location c is defined
as C′(O, C, c) = {c′ ∈ C| ∃o ∈ O′(O, C, c) such that (c2o(C) = c′) ∨ (c3o(C) = c′)}.
This set can be described as the set of delivery locations, that are the second or
third priority of any OD o that has delivery location c as their priority consider-
ing the detour. We define the (first order) neighborhood of a delivery location c as
N1(O, C, c) = (O′(O, C, c), C′(O, C, c) ∪ {c}). The first input set of the neighborhood
represents the neighboring ODs including o and the second one the neighboring deliv-
ery locations including c.
Depending on the setting, the neighborhood might be small or even empty. The
size of the neighborhood can be increased by considering a higher-degree neighbor-
hood. The second-order neighborhood is created by evaluating the neighborhood of
every delivery location in N1(O, C, c) and combining all the resulting neighborhoods
into one large neighborhood. One could further increase the size of the neighborhood
by considering neighborhoods of any degree k, adding the first-order neighborhood
of delivery locations included in the last iteration iteratively, i.e. Nk(O, C, c) =⋃

c′:(·,c′)∈Nk−1(O,C,c)N1(O, C, c′). However, we found the second-order neighborhood to
be sufficient to achieve high accuracy in predicting the avoided costs. A visual repre-
sentation of the neighborhood generation is depicted in Figure 9. In this example, the
second-degree neighborhood is created.
The pseudo-code for the simulation of the algorithm to measure its performance is
depicted in Algorithm 2. The algorithm uses discrete periods but can easily be adapted
to a continuous time setting.

5.2.2 Monotonicity properties

Since our goal is to approximate the costs of being in state SA
t , the model should

depict characteristics of our true value function. The following lemma states that the
same monotonicities as displayed in Proposition 3 hold.
Lemma 3. For any pre-arrival state SX

t = (Ot, Ct), it holds:

1. V̄t(Ot, C̃t) ≤ V̄t(Ot, Ct) with C̃t ⊂ Ct
2. V̄t(Õt, Ct) ≥ V̄t(Ot, Ct) with Õt ⊂ Ot

3. V̄t(Ot, Ct) ≤ V̄t+1(Ot, Ct) with t ≤ T

Proof. We will prove each statement individually. To establish the validity of the first
and second statements, it is sufficient to demonstrate the assertions for any subsets
C̃t ⊂ Ct and Õt ⊂ Ot, where Ct \ C̃t = {c̃t} and Ot \ Õt = {õt} for any c̃t and õt,
respectively. By consistently applying the arguments outlined below for the first and
second statements, we can verify the more general assertion of the proposition.

1. Expanding C̃t to Ct by incorporating c̃t alters the formulation of the fluid approx-
imation as follows: Firstly, we introduce the decision variables roc̃t ≥ 0 to the
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Fig. 9 The subsets of relevant delivery locations (C̄) and the subset of relevant OD destinations
(Ō) are generated iteratively, as demonstrated through a series of figures. The first figure (upper
left) illustrates delivery location 1 and the three ODs (namely, 14, 16, and 19) for whom delivery
location 1 represents the shortest detour. The second figure (upper right) identifies delivery locations
16 and 22 as significant because they represent the second and third most favorable detour options
for the ODs identified in the first step. In this figure, the filled symbols collectively represent the
first-order neighborhood of delivery location 1. The third figure (lower left) continues this iterative
process by beginning the construction of the first-order neighborhood for delivery locations 16 and
22, which were added in the previous step. The final figure (lower right) showcases the completion of
the first-order neighborhood creation for delivery locations 16 and 22. The aggregation of these first-
order neighborhoods, along with that of delivery location 1, forms the second-order neighborhood of
delivery location 1, which is depicted in the last figure with filled symbols once more.

optimization model. Secondly, a non-negative term is added to the objective
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function 22. Specifically,

∑
c∈Ct

∑
o∈Ot

PAr(o) · PAc(o, c, roc) · roc +
∑
c∈Ct

(
1−

∑
o∈Ot

PAr(o) · PAc(o, c, roc)

)
· κc

=
∑
c∈C̃t

∑
o∈Ot

PAr(o) · PAc(o, c, roc) · roc +
∑
c∈C̃t

(
1−

∑
o∈Ot

PAr(o) · PAc(o, c, roc)

)
· κc

+
∑
o∈Ot

PAr(o) · PAc(o, c̃t roc̃t) · roc̃t +

(
1−

∑
o∈Ot

PAr(o) · PAc(o, c̃t roc̃t)

)
· κc̃t

(28)

Thirdly, the set of constraints specified in (23) is enriched with the additional
constraint

∑
o∈Ot

PAr(o) · PAc(o, c̃t, roc̃t) ≤ 1. Lastly, the non-negative term
PAc(o, c̃t roc̃t) is added to the left-side of constraints (24). Consequently, the optimal
solution that yields V̄t(Ot, Ct) remains feasible, upon removing the decision vari-
able roc̃t , for the optimization problem pertaining to state (Ot, C̃t). Furthermore,
we can infer that the objective value V̄t(Ot, Ct) exceeds the value this feasible solu-
tion yields for the state (Ot, C̃t). Since this suboptimal but feasible solution is below
V̄t(Ot, Ct), it follows that the optimal solution is also below this value by definition.

2. This proof follows a similar logic to the one discussed above. By expanding the set
of ODs from Õt to Ot by including õt, the fluid approximation undergoes analo-
gous changes as outlined previously. Decision variables rõtc ≥ 0 are introduced into
the model. A term, which is non-positive in the optimal solution, is added to the
objective function:

∑
c∈Ct

PAr(õt) ·PAc(õt, c, rõtc) ·(rõtc−κc). Additionally, the con-
straints in 23 and 24 are adjusted to accommodate the new set of decision variables.
It is crucial to note that the optimal solution for the state (Õt, Ct) can be trans-
formed into a feasible solution for the state (Ot, Ct) by setting rõtc = 0 and retaining
any other value over. Given that PAc(õt, c, 0) = 0, this feasible solution yields the
same objective value for the state (Ot, Ct) as the optimal objective value V̄t(Õt, Ct).
Since we are dealing with a minimization problem, the optimal objective value is
below this value. Thus, the statement holds true.

3. In this proof, we examine the implications of lowering t+1 to t. Employing the same
methodology as before, we modify the optimal solution for t+ 1 to be feasible for
t while resulting in a lower objective value than V̄t+1(Ot, Ct). As per its definition,
PAr(o) increases with a decrease in t. This gives rise to a dual impact on the
optimization model: firstly, the value function decreases for any solution roc ≤
κc. Secondly, constraints 23 become more stringent. So, how should we adapt the
optimal solution of t+ 1?
To adhere to the tightened constraints in 23, adjustments must be made to some
of the roc. This entails lowering certain roc̃ ≤ κc̃ values when the constraint is
violated for c̃. More specifically, we can select these decision variables in a manner
that reconstructs the same probabilities PAr(o) · PAc(o, c̃, roc̃) for t as we initially
had for t + 1. Consequently, this particular customer location now carries lower
expected costs, leading to a reduction in the objective value. The decision variables
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concerning customer locations where the constraint is not violated can remain the
same and still result in lower expected costs (due to the increase in the arrival
probability). Overall, these alterations lead to a feasible solution for t, yielding
lower expected costs than for t+ 1.

Algorithm 2 FA

Require: C,O, T, λot, ICoct, k
Initialize total costs G ← 0
Simulate an arrival sequence (ot)t∈T ▷ ot might be a no-show
for t ∈ T \ {T + 1} do

h← ot
for c ∈ C do

(Ō, C̄)← Nk(O, C, c)
∆V̄ FA

t (Ō ∪ {h}, C̄, h, c)← V̄ FA
t+1

(
Ō, C̄

)
− V̄ FA

t+1

(
Ō, C̄ \ {c}

)
end for
c∗ ← argmaxc∈C{∆V̄ FA

t (Ō ∪ {h}, C̄, h, c)− ahct}
Determine r∗ by equation (10)
Offer (c∗, r∗) and observe whether h accepts
if Yes then
G ← G + r∗; C ← C \ {c∗}
if C = ∅ then

return G
end if

end if
O ← O \ {h}

end for
G ← G +

∑
c∈C κc

return G

6 Simulation study

The structure of our simulation study is as follows. We aim primarily to evaluate
the performance of our algorithms through simulations based on instances that are
typically encountered in the literature. This evaluation is conducted by comparing the
performance, specifically average costs, of the algorithms in relation to each other and
against benchmarks commonly used in the literature.
We then perform a more detailed analysis of the assignment decisions made by our
algorithms and compare their decisions to those made by a myopic assignment strategy.
This gives a better insight into how our algorithms make decisions, in relation to a
benchmark strategy.
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6.1 Instance generation

The instances on which we test our algorithms are varied across several categories
to assess the robustness of the compensation-setting strategies and to identify condi-
tions under which performance excels. The instance parameters differ in the categories
shown below:

Number of ODs

In all of our test instances, we set the number of delivery locations, C, equal to the
number of OD destinations, O. We set the number of periods, T , to be equal to the
number of ODs so that each OD may arrive, that is, T = O. We classify our instances
into three different sizes: large instances with O = 100, medium-sized instances with
O = 50, and small instances with O = 25. This allows us to systematically explore
instances with varying numbers of ODs, enabling a nuanced examination of algorithmic
performance across different instance scales.

City structure

For the present study, the delivery location coordinates are derived from the Solomon
instances, specifically, the instances denoted as C-101 and R-101. Originally designed
for the capacitated vehicle routing problem with time windows, the Solomon instances
are used to model the structure of a city in related literature, most noteworthy by
Archetti et al (2016).
To ensure a congruent structure in our study, the geographical coordinates of the OD’s
destinations are generated using a random distribution, replicating the inherent struc-
ture of the chosen instances. Specifically, in instances characterized by clustering, such
as C-101, the OD’s destinations are exclusively drawn from regions containing exist-
ing delivery locations. This approach ensures that the simulated OD pairs accurately
mirror the spatial characteristics of the underlying Solomon instances.
To reduce the effect of outliers, we generate 5 instances for each instance size and city
structure combination, by sampling random coordinates out of the coordinate sets. In
our analysis we refer to the average results.

Arrival rates

The determination of arrival rates is critical to the predictive modeling of future OD
arrivals. Given the constraint that the sum of arrival rates within a single period
should not exceed 1, the arrival rate becomes directly linked to the number of ODs. To
investigate the impact of different expected arrival scenarios (AR), we conduct tests
with both high (λo = 1

O ) and low (λo = 0.5
O ) arrival rates. In our study, the arrival

rate for all ODs are equal; this reflects scenarios where there is general awareness
of the overall number of expected OD arrivals during the time horizon, but limited
knowledge of the arrival probability associated with each OD.

Other parameters

The fixed costs, denoted as κc, associated with the delivery to a delivery location by
a dedicated driver are maintained at a constant value of 10 for each location c. The
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IC is modeled as a uniform distribution. Furthermore, the parameters for the IC are
as follows: aoct = 1 + 0.5uoc and boct = 2 + 0.5uoc.

6.2 Compensation setting strategies

To demonstrate the significant advantages of the proposed algorithms over standard
methods, we compare our algorithms with four benchmark strategies frequently used
in the literature. To enhance distinguishability, we categorize all approaches into two
distinct groups, based on their compensation strategy. The predictive group makes
decisions by approximating the avoided costs using the methods discussed in sections
5.1 and 5.2. Specifically, we compare the value function approximation algorithm
(subsequently labeled as VFA) and the fluid approximation algorithms (subsequently
labeled as FA and FA-SP, with the latter being based on shadow prices). We use the
second-degree neighborhood as relevant subsets for decision-making (refer to 5.2.1)
in FA. The myopic group contains benchmark rule-based decision-making policies
commonly employed in the literature.

Benchmark 1: Fixed compensation

As the name suggests, the first benchmark relies on a compensation that is determined
at the start of the process and is offered to any arriving OD.

Benchmark 2: Distance-based compensation

The second benchmark’s compensation strategy is to offer ρ · d0c to any OD to serve
delivery location c, where ρ > 0. Using the scaled distance is proposed in Archetti
et al (2016) and has the advantage that the compensation is independent of the OD’s
destination.

Benchmark 3: Detour-based compensation

The third benchmark’s compensation strategy is to offer ρ · uoc to the OD o for
serving delivery location c, where ρ > 0. This strategy, referred to as ’scaled detour’
also incorporates knowledge about the OD’s destinations to create a compensation
that aims to closely resemble the OD’s perceived true cost. In a deterministic setting,
Archetti et al (2016) used this compensation scheme with the assumption that all ODs
arrive and accept the offer when their detour does not exceed a predefined threshold.

Benchmark 4: Combination of fixed and detour-based compensation

The fourth benchmark’s compensation strategy involves offering ν + ρ · uoc to OD o
for serving delivery location c, where ρ > 0 and ν > 0. This strategy is a combination
of benchmarks 1 and 3 that combines a fixed with a detour-based component. This
compensation strategy best aligns with the assumptions we selected for our IC and
is therefore expected to outperform the other benchmark algorithms in the simulated
settings.

Implementing a myopic strategy poses the challenge that the firm must determine
precise parameters. Identifying optimal parameters in real-world scenarios can be
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inherently challenging. To address this issue in our simulation study, we conducted a
thorough parameter search to identify a well-fitting set of parameters before simulat-
ing the arrival process. This approach ensures a fair comparison with the algorithms
in the predictive group.
Myopic approaches calculate the compensation for an OD for a given delivery loca-
tion using straightforward rules. However, the choice of which delivery location to
propose is still to be decided. Our results, as per Proposition 2, show that the opti-
mal delivery location to offer is the one with the largest difference between avoided
costs and known inconveniences. Since myopic compensation strategies refrain from
approximating avoided costs, the decision about the delivery location is made purely
based on the minimal known inconvenience. Therefore, in our scenarios, the offered
delivery location is always the one with the shortest detour for the arriving OD. To
provide a fair comparison, the compensation is lowered to the known upper bound of
the IC when the myopic compensation is above that upper bound. Table 2 provides a
summary of all compared compensation strategies.

Table 2 Summary Table of the tested compensation-setting strategies

Comp.
Strategy

Group Compensation ∆V Appr. Ref.

FA Predictive (10) (26) -
FA-SP Predictive (10) (27) -
VFA Predictive (10) (17) -
B1 Myopic min(ρ, boct + aoct), ρ > 0 - -
B2 Myopic min(ρ · d0c, boct + aoct) - Archetti et al

(2016), Le et al
(2021)

B3 Myopic min(ρ · uoc, boct + aoct) - Archetti et al
(2016), Boysen
et al (2021)

B4 Myopic min(ν + ρ · uoc, boct + aoct) - Dayarian and
Savelsbergh
(2020)

6.3 Algorithm performance

In evaluating algorithmic performance within our simulation study, a comprehensive
set of indicators has been established to measure and compare the efficiency and effec-
tiveness of different algorithms. The primary focus of these indicators is to quantify
the economic impact and operational involvement of ODs in the delivery process. The
indicators are defined as follows:

1. Average costs: Defined as AC(Algorithm, Instance), this metric represents the
average total cost incurred across all runs for instances with identical characteris-
tics. The average cost includes the sum of the compensation paid to ODs for each
run and the cost of dedicated drivers. Since the firm aims at minimizing the cost,
lower average costs are generally desirable.
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Table 3 Comparison of the AC

CS Size AR FA FA-SP VFA B1 B2 B3 B4
C 25 1 183.72 183.79 182.04 185.04 210.63 241.02 184.62
C 25 0.5 199.80 199.30 199.78 202.70 232.42 241.88 202.42
C 50 1 337.23 338.35 336.47 337.09 433.52 457.86 336.41
C 50 0.5 387.83 387.87 389.24 389.66 452.37 467.03 389.27
C 100 1 627.78 626.87 627.17 629.19 979.25 1000.00 628.51
C 100 0.5 742.56 743.72 752.74 745.70 984.15 1000.00 745.42
R 25 1 184.67 183.44 181.55 182.76 213.44 243.29 182.25
R 25 0.5 199.35 199.45 199.17 203.49 214.56 230.14 203.23
R 50 1 342.26 342.72 340.44 343.31 375.82 437.08 342.70
R 50 0.5 385.73 386.04 384.81 388.62 474.14 484.43 388.15
R 100 1 656.74 654.97 640.85 659.17 982.44 1000.00 658.22
R 100 0.5 751.42 750.11 749.62 756.53 986.95 1000.00 756.32

2. Average payment (compensation) per OD: Denoted as
AP (Algorithm, Instance), this metric measures the average compensation received
by an OD for successful deliveries. To minimize costs, a firm may prefer lower aver-
age compensation, yet this approach entails trade-offs in certain contexts. On one
hand, higher average payments result in more ODs accepting the compensation.
That also means that the fixed cost κc is avoided for more delivery locations. The
compensation strategy is more risk-averse towards the OD’s acceptance decision.
On the other hand, lower compensations might be sufficient to convince the OD
to accept an offer. This leads to a more risk-affine compensation strategy, in the
spirit of exploiting the OD’s willingness to participate more aggressively.

3. Average number of deployed ODs: This indicator assesses the involvement
level of ODs in serving delivery locations, providing the total average number of
deployed ODs (TN). When only considering the firm’s goal of minimizing the costs,
the number of deployed ODs is a neutral indicator, since it does not say anything
about the reduction of costs achieved by the avoided fixed costs κc. A higher number
of OD deployments could however benefit the environment and reduce traffic in the
city, which is generally desirable.

To facilitate a comparative analysis between different algorithms, the gap metric

Param-G(A1, A2, I) = 1 − Param(A1,I)
Param(A2,I) is introduced. This formula quantifies the

relative performance discrepancy between two algorithms (A1 and A2) for a given
parameter (Param) and instance (I). For instance, the gap in average costs between

two algorithms is denoted as AC-G(A1, A2, I) = 1 − AC(A1,I)
AC(A2,I) . In cases where the

instance is omitted as a parameter and no additional information is provided, the
reference value defaults to the average across all instances.

6.3.1 Predictive group

In our examination of algorithmic performance within clustered instances (the first six
lines in Tables 3-5), it becomes evident that there’s no definitive frontrunner among
the algorithms. This observation is quantitatively substantiated by the narrow aver-
age AC-G over all clustered instances, whose average values do not surpass 0.1%.
This impression shifts when analyzing scenarios with randomly distributed locations
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Table 4 Comparison of the AP

CS Size AR FA FA-SP VFA B1 B2 B3 B4
C 25 1 4.59 4.71 4.46 4.37 4.35 8.75 4.29
C 25 0.5 4.29 4.34 4.25 4.31 4.54 6.37 4.30
C 50 1 4.22 4.30 4.00 4.14 4.38 6.32 4.15
C 50 0.5 4.11 4.14 4.05 4.03 4.23 5.33 4.08
C 100 1 3.93 3.94 3.67 3.85 3.00 nan 3.80
C 100 0.5 3.60 3.62 3.78 3.64 3.00 nan 3.63
R 25 1 4.40 4.42 4.03 4.19 4.39 8.95 4.15
R 25 0.5 4.05 4.11 3.99 4.29 4.72 7.34 4.22
R 50 1 4.04 4.13 3.88 3.78 4.22 7.11 3.87
R 50 0.5 3.85 3.89 3.77 3.77 3.83 4.90 3.78
R 100 1 3.84 3.83 3.49 3.71 3.00 nan 3.63
R 100 0.5 3.54 3.54 3.53 3.49 3.00 nan 3.51

Table 5 Comparison of the TN

CS Size AR FA FA-SP VFA B1 B2 B3 B4
C 25 1 12.26 12.52 12.27 11.55 6.96 7.20 11.45
C 25 0.5 8.79 8.96 8.73 8.31 3.22 2.24 8.34
C 50 1 28.14 28.36 27.26 27.82 11.83 11.46 27.96
C 50 0.5 19.06 19.14 18.60 18.49 8.26 7.05 18.69
C 100 1 61.35 61.58 58.94 60.25 2.96 0.00 59.93
C 100 0.5 40.21 40.15 39.76 39.96 2.26 0.00 39.94
R 25 1 11.66 11.92 11.46 11.57 6.52 6.39 11.59
R 25 0.5 8.51 8.58 8.46 8.15 6.71 7.48 8.09
R 50 1 26.48 26.77 26.08 25.20 21.50 21.76 25.67
R 50 0.5 18.58 18.64 18.48 17.88 4.19 3.06 17.98
R 100 1 55.69 55.88 55.13 54.19 2.51 0.00 53.63
R 100 0.5 38.47 38.68 38.72 37.38 1.86 0.00 37.53

(the last six lines in Tables 3-5). Here, the VFA consistently emerges as the superior
algorithm across all six instances, further highlighted by an average AC-G(VFA,FA)
of 0.87% and AC-G(VFA,FA-SP) of 0.73% over all randomly spread instances. This
marks the VFA as particularly adept in managing dispersed delivery locations effi-
ciently.
However, when delving into the comparative performance of the FA and FA-SP algo-
rithms, the picture becomes less sharp. The FA-SP algorithm marginally outperforms
the FA algorithm, as evidenced by an average AC-G(FA-SP,FA) of 0.06%. Although
this is just a slight advantage, it gains significance in light of the FA algorithm’s pro-
longed run time, which is 34.65% longer on average compared to the FA-SP (refer
to table A1 in the appendix). This considerable delay positions the FA-SP algorithm
favorably, particularly in time-sensitive operational environments.
In terms of average costs, the VFA emerged as a notable performer. In the follow-
ing, we turn our attention on the next indicator, the average payment per OD. I this
metric, VFA proves to offer the lowest average compensation for ODs in eleven of
twelve scenarios. Contrary, the FA-SP exhibits in most scenarios the highest average
compensation paid per OD. Upon closer examination of the average difference in com-
pensation between VFA and FA-SP, denoted as AC-G(VFA,FA-SP), we observed a
reduction in the average compensation per OD by 4.04% across all instances. This
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gap widened in non-clustered instances, where the difference in average compensation
increased to approximately 5%. These findings underscore the effectiveness of VFA’s
more aggressive compensation and matching decisions, particularly in non-clustered
instances, leading to lower average costs for the firm. However, it is crucial to note that
this reduced average compensation under the VFA corresponded to a 1.65% decrease
in the number of delivery locations served by ODs. As evidenced by the advantage in
AC compared to the FA-SP algorithm, this trade-off highlights the VFA’s superior bal-
ance between the number of served delivery locations and the height of compensation.
Interestingly, while the FA-SP algorithm consistently resulted in higher average pay-
ments per OD compared to the FA, the overall average costs did not show a significant
difference between these two algorithms. This observation suggests that the increased
payments in the FA-SP do not necessarily translate into proportionally higher overall
costs.

6.3.2 Myopic group

In every instance evaluated, algorithm B4 consistently secured the lowest average costs
at 418.13, closely followed by B1 at 418.60 and then B2 at 544.98. Notably, B3 lagged
significantly and had the least favorable average costs. Despite B4’s leading perfor-
mance in all cases, it’s important to note that the average AC-G(B4,B1) was small,
at just 0.19% across all instances. This proximity in the average costs across B1 and
B4 is a result of their compensation structures, which tie them at a tight bound by
the parameters of the IC framework. For example, B1 sets an average compensation
of 6.22 for each OD, while B4 chooses a fixed compensation of 4.85 (refer to table A3),
supplemented by an average detour scalar of 0.26 (refer to table A5). Although there
are differences, the actual compensations are capped at the upper bound of the IC,
when initial calculations exceed this limit. The operational difference between both
approaches only begins to emerge when the ODs see substantial detours, especially
those that are 3 or more, raising the bound of ICs considerably. Here, the differ-
ent compensation models of B1 and B4 reveal their impact, introducing variability
in the decision-making. However, these are exceptional cases, making the working
environment predominantly homogeneous in most instances for the two mentioned
benchmarks. The other two benchmarks, based solely on detour or distance, cannot
address the fixed payment expectation component of the ODs due to their structure,
which is why their performance falls short in comparison to B1 and B4. The consid-
eration of a fixed payment expectation is especially important in instances with short
detours, which are often found in densely populated areas.
For B3, there is a noticeable trend where no OD is deployed in larger settings, where
arriving ODs are facing a rich bouquet of delivery locations. With many possibili-
ties, there is usually a delivery location that can be served by this OD with only a
short detour. Consequently, this benchmark offers a small compensation, too small
to offset the fixed payment expectation component of the IC. Despite the challenges,
B1 and B4 perform well due to their compensation strategies that align better with
the assumptions on the IC in this study. This emphasizes the significance of design-
ing algorithms that are aligned with real-world conditions in which they operate. In
terms of the total number of ODs deployed, B1 and B4 are equally consistent, each
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averaging 26.73. In contrast, B2 and B3 deploy only 6.56 and 5.55 ODs on average,
respectively. Accompanied by the higher average payments per OD, B2 and B3 are
conclusively non-competitive when compared to B1 and B4. B4’s flexibility suggests
superior adaptability in decision-making across instances, yet this does not signifi-
cantly affect the average compensation per OD relative to B1, indicated by an average
AP -G(B4,B1) = 0.33% over all instances.

6.3.3 Comparison of the predictive and myopic algorithms

In our comparative analysis of the predictive and myopic groups, we focused on the
algorithms with the lowest average costs within each group. The analysis shows that
the benefit of using the predictive algorithm is quantifiable, with AC-G ranging from
−0.02% to 2.64% across different instances. In particular, the occurrence of a negative
gap indicates that myopic decisions can occasionally lead to a reduction in average
costs, underscoring their potential utility in certain scenarios.
On a broader scale, the predictive algorithm shows an average benefit of 0.95% across
all instances. This is especially significant given that the myopic algorithms under-
went extensive parameter optimization before deployment to ensure that they were
operating at optimal performance levels. However, performance varies significantly
across different city structures. For example, in clustered instances, the average AC-
G is 0.66%. In random instances, it increases significantly to 1.24%. This variation is
largely attributed to the superior performance of VFA within the predictive group,
which effectively exploits the heterogeneous nature of the IC and the dynamics of
competition among different ODs.
Interestingly, the AC-G of 0.89% in high arrival rate instances is unexpectedly lower
than the 1.01% observed in low arrival rate instances. This observation suggests that
the impact of arrival rates on AC-G is complex and may require further investigation
through a larger simulation study. Moreover, the instance size significantly influences
the performance benefits of the predictive algorithm. In clustered instances with a size
of 25, the AC-G reaches 1.47%, a stark contrast to the 0.25% in clustered instances
with a different number of ODs. This increased benefit is primarily due to the algo-
rithm’s strategic allocation of delivery locations, a factor that becomes more important
when the number of ODs, and therefore profitable matches, is limited. Conversely, in
random instances, the AC-G remains relatively stable across different instance sizes,
indicating the algorithm’s consistent performance in such city structures.
In our analysis of the VFA and B4 algorithms, which stand as representatives of their
respective groups, we observe an average AP -G(VFA,B4) of 1.03%. This indicates
that VFA not only yields the lowest average payments per OD among all examined
predictive algorithms but also outperforms B4 in this metric. A plausible reason for
this outcome is that while assigning ODs to the shortest detour locations might result
in lower compensations in the short term, it regularly leads to scenarios where the only
option is to offer exceptionally high compensations due to poor OD-delivery location
pairings. Furthermore, the average TN -G(VFA,B4) is −1.71%, suggesting that, on
average, the predictive algorithm engages a higher proportion of ODs. This outcome,
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particularly in combination with AP , clearly demonstrates that VFA achieves signifi-
cantly better OD-deliver location matchings compared to B4, explaining its efficiency
in minimizing costs.

6.3.4 Simulation study summary

The analysis in this chapter demonstrates that utilizing a predictive algorithm is
advantageous compared to using a myopic algorithm. This advantage is significant,
indicating a robust benefit of using VFA in various operational contexts. The feasibil-
ity of implementing this algorithm is emphasized by its adaptability and the significant
cost reduction it offers, especially in rural areas with a more dispersed population.
When evaluating benchmark algorithms, it is essential to thoroughly examine the IC
structure. This fundamental understanding is critical for effectively tailoring compen-
sation strategies. When the IC exhibits a relatively fixed nature, a fixed compensation
or a hybrid model that integrates both fixed and detour-based compensations can be
a viable and simplistic alternative to the predictive approach.
Lastly, it is important to note the limitations of compensation models that rely
solely on distance or detour metrics. Under the conditions and structures examined
in this study, these approaches are insufficient to provide the adaptability and effi-
ciency required for optimal performance in our dynamic setting. Overall, benchmark
strategies seem to be more sensitive regarding the considered setting than predictive
algorithms.

6.4 Comparison of the assignment strategies

The decision in each pre-decision state involves determining the compensation and
assigning a delivery location. In Figure 10, we illustrate the assignment decisions made
by the myopic group in contrast to those made by FA. The thickness of a line in the
visualization corresponds to the number of matches between the connected OD and
the delivery location. The thicker the line, the more frequently the OD has visited
that delivery location in 1000 simulation runs. The comparison is based on the R-101
instance with 25 fixed ODs and delivery locations, but varying OD arrival orders. This
visualization demonstrates that predicting future OD arrivals is taken into account by
the FA algorithm, leading to more sophisticated assignment decisions.
In Figure 10, we see some notable differences in the assignment decisions, highlighted
by two examples, labeled as A and B. In example A, the encircled pair is matched
about half as frequently in the myopic assignment strategy compared to the predictive
strategy. This difference arises due to a delivery location with a lower detour for the
highlighted OD, which the myopic approach strongly prefers, as indicated by the thick
line between them. Given that other ODs could also efficiently serve this centrally
located delivery location, the FA algorithm strategically reserves it for such occasions,
thus matching the highlighted pair more frequently to reduce total costs.
In example B, the encircled delivery location offers minimal detours for two nearby
ODs. However, with only one OD able to be assigned to this delivery location, the
myopic approach assigns it to the OD that arrives first. The randomness of OD arrival
orders leads to several potential pairings in this approach, as evidenced by the four
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connecting lines in the left figure. Yet, this method does not guarantee the most
cost-effective matches. In contrast, the predictive assignment strategy forms only two
distinct pairings, reserving the encircled delivery location for the non-encircled OD
when the encircled OD arrives first, optimizing the overall costs.

Fig. 10 Visual comparison of the assignment strategies of the myopic strategy (left) and the pre-
dictive strategy of the FA-Algorithm (right). The thickness of the lines represents the frequency in
which a delivery location is visited by an OD.

7 Conclusion

In our article, we introduce an innovative approach to leveraging in-store customers,
who may be willing to divert their planned route to deliver online orders for mone-
tary compensation. While these occasional drivers present a cost-effective alternative
to traditional dedicated drivers, they also pose additional challenges, arising from
their unpredictive nature, manifested in their arrival time and decision-making. Our
approach meets these characteristics by dynamically matching arriving occasional
drivers with delivery tasks, incorporating individualized compensations that con-
sider each occasional driver’s specific circumstances. This approach, akin to a reverse
dynamic pricing model, explicitly considers the stochasticity inherent in occasional
drivers’ availability and decision-making.
We prove several properties of the optimization problem, with a special focus on the
optimal solution and avoided costs: First, we establish the existence of a unique opti-
mum in the step-wise optimization. Furthermore, we provide a closed-form solution
for scenarios where the IC is uniformly distributed, improving both computational
efficiency and interpretability of the results. Second, we outline an efficient and sim-
ple method to find the optimal matching between OD and delivery locations, thereby
refining the decision-making process. Finally, we shed light on the monotonic behavior
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Table A1 Average time (in seconds) of one simulation run. Since one simulation
run includes multiple decisions, the number needs to be divided by the number of
OD arrivals to get the average time it took to generate the offer bundle

CS Size AR FA FA-SP VFA B1 B2 B3 B4
C 25 1 0.197 0.134 0.003 0.000 0.000 0.000 0.001
C 25 0.5 0.126 0.084 0.003 0.000 0.000 0.000 0.000
C 50 1 0.793 0.582 0.011 0.001 0.001 0.001 0.001
C 50 0.5 0.797 0.500 0.009 0.001 0.001 0.001 0.001
C 100 1 12.400 7.267 0.040 0.002 0.002 0.002 0.002
C 100 0.5 7.538 4.002 0.030 0.002 0.002 0.002 0.002
R 25 1 0.214 0.148 0.004 0.001 0.000 0.000 0.000
R 25 0.5 0.166 0.113 0.003 0.000 0.000 0.000 0.000
R 50 1 1.262 0.939 0.011 0.001 0.001 0.001 0.001
R 50 0.5 1.004 0.656 0.008 0.001 0.001 0.001 0.001
R 100 1 12.265 8.273 0.042 0.003 0.002 0.002 0.003
R 100 0.5 9.006 5.261 0.030 0.002 0.002 0.002 0.002

Table A2 Average OD arrivals

CS Size AR FA FA-SP VFA B1 B2 B3 B4
C 25 1 16.16 16.16 16.16 16.16 16.16 16.16 16.16
C 25 0.5 10.3 10.3 10.3 10.3 10.3 10.3 10.3
C 50 1 32.16 32.16 32.16 32.16 32.16 32.16 32.16
C 50 0.5 20.42 20.42 20.42 20.42 20.42 20.42 20.42
C 100 1 63.58 63.58 63.58 63.58 63.58 63.58 63.58
C 100 0.5 40.48 40.48 40.48 40.48 40.48 40.48 40.48
R 25 1 16.16 16.16 16.16 16.16 16.16 16.16 16.16
R 25 0.5 10.3 10.3 10.3 10.3 10.3 10.3 10.3
R 50 1 32.16 32.16 32.16 32.16 32.16 32.16 32.16
R 50 0.5 20.42 20.42 20.42 20.42 20.42 20.42 20.42
R 100 1 63.58 63.58 63.58 63.58 63.58 63.58 63.58
R 100 0.5 40.48 40.48 40.48 40.48 40.48 40.48 40.48

of the avoided costs, paving the way for the development of effective approximation
algorithms.
In addition, we introduce two algorithms that exploit the gained structural insights.
Their effectiveness is validated through a comprehensive simulation study, where they
collectively demonstrate superior performance compared to existing benchmarks. Fur-
ther results from the simulation show that the predictive algorithms have a higher
cost saving effect than conventional compensation setting methods when the spatial
distribution of delivery locations is dispersed.
Future research should focus on examining the IC of an OD population to better
assess algorithm performance in different settings. Additionally, exploring the impact
of variable cost structures for DDs, particularly those based on mileage, could be of
significant benefit for companies that manage their own fleet.

Appendix A Other material
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Table A3 Average fixed compensation

CS Size AR FA FA-SP VFA B1 B2 B3 B4
C 25 1 0 0 0 6.28 0 0 4.52
C 25 0.5 0 0 0 6.36 0 0 5.08
C 50 1 0 0 0 6.1 0 0 4.84
C 50 0.5 0 0 0 6.08 0 0 5.08
C 100 1 0 0 0 6.04 0 0 4.74
C 100 0.5 0 0 0 6.34 0 0 5.08
R 25 1 0 0 0 6.08 0 0 4.52
R 25 0.5 0 0 0 6.66 0 0 5.14
R 50 1 0 0 0 5.7 0 0 4.76
R 50 0.5 0 0 0 6.44 0 0 4.84
R 100 1 0 0 0 6.38 0 0 4.58
R 100 0.5 0 0 0 6.2 0 0 5

Table A4 Average distance scalar

CS Size AR FA FA-SP VFA B1 B2 B3 B4
C 25 1 0 0 0 0 0.24 0 0
C 25 0.5 0 0 0 0 0.2 0 0
C 50 1 0 0 0 0 0.24 0 0
C 50 0.5 0 0 0 0 0.24 0 0
C 100 1 0 0 0 0 0.22 0 0
C 100 0.5 0 0 0 0 0.18 0 0
R 25 1 0 0 0 0 0.22 0 0
R 25 0.5 0 0 0 0 0.46 0 0
R 50 1 0 0 0 0 0.44 0 0
R 50 0.5 0 0 0 0 0.26 0 0
R 100 1 0 0 0 0 0.24 0 0
R 100 0.5 0 0 0 0 0.26 0 0

Table A5 Average detour scalar

CS Size AR FA FA-SP VFA B1 B2 B3 B4
C 25 1 0 0 0 0 0 15.7 0.3
C 25 0.5 0 0 0 0 0 19 0.24
C 50 1 0 0 0 0 0 39.5 0.26
C 50 0.5 0 0 0 0 0 40.3 0.24
C 100 1 0 0 0 0 0 1 0.26
C 100 0.5 0 0 0 0 0 1 0.26
R 25 1 0 0 0 0 0 27.2 0.28
R 25 0.5 0 0 0 0 0 70.6 0.22
R 50 1 0 0 0 0 0 76.8 0.24
R 50 0.5 0 0 0 0 0 20.3 0.28
R 100 1 0 0 0 0 0 1 0.26
R 100 0.5 0 0 0 0 0 1 0.24
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