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Abstract 

In this paper, we introduce a nonlinear dynamic pricing model in the presence of multiunit demand, 

enabling firms to quote separate prices for each batch size. This approach diverges from traditional 

models by accounting for customer heterogeneity in product attraction and batch size preference, each 

modeled by separate random variables in the calculation of customers’ willingness-to-pay. The 

underlying customer choice model results in a complex formulation of purchase probabilities, 

necessitating considerable effort for refinements to derive a manageable expression. 

After these refinements, we develop optimality conditions for the stage-wise optimization problem. As 

finding the optimal solution in every state remains non-trivial, we resort to formulating a fluid 

approximation model. Under a simplifying assumption, we can solve this approximation and 

subsequently verify that this assumption indeed holds for the obtained solution. The resulting static 

pricing policy is asymptotically optimal for our dynamic setting. Rather than directly applying this static 

policy, we leverage it to ensure the asymptotic optimality of three innovative heuristic methods 

developed within this study. 

In our simulation study, we benchmark these heuristics against an upper bound and analyze patterns in 

the corresponding policies to gain managerial insights. Notably, our findings suggest that a piecewise 

linear pricing structure performs very well, offering an easy-to-communicate alternative to full nonlinear 

pricing. 

Keywords: Revenue Management, Dynamic Pricing, Nonlinear Pricing, Multiunit Demand, Customer 

Choice  
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1 Introduction 

Nonlinear pricing – such as volume discounts or special offers like "buy 3, pay 2" – were and still are a 

commonly applied pricing strategy in the ever-evolving field of retail. Enabled by advancements in 

digital technologies (e.g., e-commerce and digital price tags), businesses can now adjust prices in real-

time. This allows for swift responses to varying market demands and inventory levels. However, 

traditional dynamic pricing models have a critical limitation: they usually assume that customers 

purchase only a single unit at a time. This assumption overlooks the complexities and opportunities 

presented by multiunit purchases, which are prevalent in sectors ranging from groceries to clothing. 

Addressing this gap, our paper presents an approach that combines nonlinear and dynamic pricing to 

optimally quote prices for every possible batch size of a product. This framework is designed to 

maximize revenue in a scenario, where the selling horizon is finite and the product inventory scarce. In 

such a setting, the firm faces a nuanced decision-making process of customers who choose between 

different alternatives, comprising of different prices for varying batch sizes. Central to our approach is 

our novel customer choice model, specifically tailored for capturing multiunit purchasing behaviors. To 

achieve this, we use two random variables to model customers' willingness-to-pay. 

This dual-variable approach is both novel and necessary. By considering two independent random 

variables, our model offers a more accurate and nuanced modeling of how differently customers value 

multiple units of a product. This innovative perspective is essential for businesses to dynamically adjust 

batch prices in real-time, ensuring that pricing strategies are not only responsive but also anticipative 

with regards to customer behavior. 

We contribute on the sparse literature on multiunit dynamic pricing by addressing the complex 

optimization challenge of dynamically quoting batch prices. Due to the complex customer choice model, 

deriving a closed-form solution to our optimization problem is intractable and beyond the scope of this 

paper. Nonetheless, our analysis sheds light on the structural properties and optimality conditions 

inherent in the multiunit dynamic pricing problem, laying a foundation for heuristic solution methods 

that approximate optimal outcomes. An important achievement of our research is ensuring asymptotic 

optimality, a desired attribute for heuristic methodologies, which we derive from the analysis of a fluid 

approximation. 

However, this fluid approximation still faces the difficulties posed by the complex customer choice 

model. To navigate these challenges, we propose a modified fluid model that, under certain conditions, 

provides the original approximation's solution while being significantly easier to solve. We introduce 

three innovative algorithms that, while heuristic, approach optimality asymptotically. Two of these 

algorithms build on the foundational work of Schur (2024), based on observed customer information. 

The third algorithm proposes a novel decomposition approach, simplifying the customer choice model 

and offering an alternative, numerically solvable optimization problem that serves as a proxy for our 

original model. 



3 

This paper is organized as follows: In Section 2, we briefly review relevant literature. Section 3 details 

our new customer choice model, emphasizing the critical role of our dual-variable approach, and 

presents the optimization model. Section 4 commences with reducing complexity of the probability 

function, enabling the determination of optimality conditions on an optimal solution. Subsequently, a 

fluid model as well as a modified fluid model are developed, both to motivate the asymptotic optimality 

of our heuristic algorithms, presented in Section 5. In Section 6, we present a numerical study that 

underlines the efficiency of our heuristics and provides managerial insights, establishing the practical 

benefits of adopting an intricate, nonlinear dynamic pricing strategy. 

2 Literature review 

In this study, we bridge the domains of dynamic pricing and nonlinear pricing, integrating the strengths 

of both. Initially, we start with a concise review of works within these two distinct yet interconnected 

domains. This foundational overview sets the stage for a deeper exploration into the specialized 

segments of multiunit and multiproduct dynamic pricing. 

Multiunit dynamic pricing, which also covers nonlinear pricing, represents a relatively new field of 

research with sparse literature. Our research contributes to this niche, acknowledging the critical role of 

nonlinear pricing in catering to multiunit demands. Following this, we shift our focus to multiproduct 

dynamic pricing, a domain aligned with our research due to its focus on customer choice models. Here, 

customers are presented with multiple options, mirroring the decision-making process central to our 

study. 

Nonlinear pricing is a widespread strategy across various sectors, including telecommunications, 

transportation, energy, supply chains, and retail. Consequently, there is a rich and diverse literature on 

the subject. R. Wilson (1993) provides a comprehensive overview of the application fields, economic 

principles, and marketing insights related to nonlinear pricing. While much of the existing literature 

focuses on static pricing models, a small subset of researchers has turned their attention to dynamic 

environments, which align more closely with the thematic focus of our study (e.g., Dhebar & Oren, 

1986, and Braden & Oren, 1994). 

The conceptual foundations of dynamic pricing trace back to seminal studies on intertemporal price 

discrimination conducted 30 to 40 years ago, with notable contributions by Stokey (1979), Landsberger 

and Meilijson (1985), and C. A. Wilson (1988). A significant milestone was achieved by Gallego and 

van Ryzin (1994), who were the first to explore optimal dynamic pricing for a single product under 

stochastic demand over a finite selling horizon. This pioneering work led to a vast amount of follow-up 

research, which was reviewed and summarized by many authors, including Bitran and Caldentey (2003), 

Chiang et al. (2007), and, with a special focus, Gönsch et al. (2013) and den Boer (2015), as well as in 

textbooks by Talluri and van Ryzin (2004) (Chapter 5) and Phillips (2005) (Chapter 10). 
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While dynamic pricing has been extensively explored, the specific area of multiunit dynamic pricing is 

still emerging. Elmaghraby et al. (2008) delve into markdown pricing mechanisms within a multiunit 

demand framework, assuming complete information about customers and their willingness to pay. Levin 

et al. (2014) expanded the discussion to a dynamic pricing model characterized by stochastic customer 

demand for batches. In their framework, customers request a specific batch size and the seller's 

subsequent pricing response determines whether a purchase is made. Thereby, the probability of 

purchase is influenced by the price set for the batch. However, unlike their approach, our research 

introduces a more flexible decision-making process where customers can review all available prices 

prior to determining their optimal purchase quantity. This advancement not only empowers customers 

with greater choice but also provides firms with a mechanism to strategically steer customers' buying 

decisions and purchase volumes. 

Gallego et al. (2020) investigate three dynamic pricing strategies: nonlinear, linear, and block pricing. 

In their proposed choice model, customers seek to maximize their utility and are characterized by a 

single random variable. The authors develop optimality conditions and show structural properties. 

However, our research diverges fundamentally by modeling customer behavior with two independent 

variables, thereby offering a more granular representation of customer decision-making processes. This 

dual-variable approach represents a significant departure from the conventional single-variable models. 

Schur (2024) explores a scenario remarkably similar to ours but diverges in assuming firms' access to 

some or all private information about arriving customers. This assumption paves the way for 

personalized pricing strategies and the evaluation of the strategic value of customer information. 

Contrary to this, our research operates under the premise of limited information, enabling the universal 

applicability of our pricing model without relying on the availability of detailed customer insights.  

Multiunit dynamic pricing can be compared to the better-explored field of multiproduct dynamic pricing 

by defining batches of a single product as several different “products”. Several articles (see, e.g., Zhang 

& Cooper, 2009, Dong et al., 2009, and Akçay et al., 2010, or, for a review, Chen & Chen, 2015) have 

investigated dynamic pricing of substitutes. In these publications, a customer can choose between 

several products and each of these products has its (own) stock. Although multiunit dynamic pricing is 

related to multiproduct dynamic pricing of substitutes, the inventory structure often differs. Several 

analytical difficulties arise in a setting where “products” consume a different amount of a single resource 

compared to a setting where each product has its independent resources. One exception to the product-

specific inventory setting is Maglaras and Meissner (2006). They consider a slightly different 

multiproduct model where each product consumes one unit of a single resource. They show that, in their 

setting, dynamic pricing and capacity control can be reduced to a common formulation in which the firm 

controls the consumption rate of every product regarding resource capacity. Moreover, they prove that 

the solution of a fluid model is asymptotically optimal. This proof is generalized to a setting where 

products can consume more than just one unit of a single resource. 
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Our comprehensive literature review highlights a significant gap in research concerning nonlinear 

dynamic pricing, despite the contributions of Gallego et al. (2020) and Schur (2024). These 

investigations, while invaluable, present methodologies distinct from our own, underscoring the novelty 

of our approach. Gallego et al. (2020) adopt a choice model which simplifies customer behavior to a 

singular random variable. In contrast, our method advances this by incorporating dual random variables, 

a refinement that allows for a richer, more nuanced depiction of customer decision-making. This dual-

parameter approach not only provides a deeper insight into individualized customer behavior but also 

introduces a layer of complexity to the optimization by integrating additional dimensions of uncertainty. 

Conversely, Schur (2024) explores a customer choice model akin to ours, with a crucial distinction in 

their assumption about data accessibility. Unlike their premise of (partial) visibility into customer's 

private data, our study assumes no observability, ensuring the universal applicability of our pricing 

model without relying on the availability of detailed customer insights. 

Moreover, our review indicates that other contributions to the field tend to deviate significantly in basic 

assumptions, exploring different scenarios altogether. Notably, many of these studies overlook the 

dynamics of customers with flexible multiunit demand, thereby missing the opportunity to assess how 

nonlinear pricing strategies can effectively shape and capitalize on stochastic purchasing behaviors. 

3 Problem definition 

In Section 3.1, we introduce the general setting and notation. In Section 3.2, we present the customer 

choice model, deriving a functional formulation of the selling probabilities. Lastly, in Section 3.3, we 

present the optimization model. 

3.1 General setting and notation 

We adapt the standard setting of dynamic pricing to cope with multiunit purchases. To do so, we 

consider the following framework: A firm sells a single product over a finite selling horizon. The selling 

horizon is divided into � periods and indexed backward in time, i.e., periods � and 0 mark the beginning 

and the end of the horizon, respectively. The initial stock of � units of the product is nonreplenishable 

and any capacity remaining after the selling horizon is worthless. We assume that exactly one customer 

arrives in each period � ∈ {�, … ,1}. At this moment, the firm knows the remaining capacity � ∈

{1, … , �} and sets a price vector � = (��, ��, … , ��)� with �� marking the price the customer has to pay 

for � units of the product, i.e. for a batch with batch size � ≤ �. Depending on the prices the firm quotes, 

this customer may purchase zero, one or more (up to �) units of the product. Thereby, ��(�) denotes the 

probability that this customer chooses to buy � units of the product.  

3.2 Customer choice model 

In our model, customers are presented with several purchasing options, ranging from various batch sizes 

to opting not to purchase at all (a batch size of zero). Each customer internally evaluates these options 
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based on a personal, albeit unknown to the firm, willingness-to-pay, which can be quantified monetarily. 

The decision-making process hinges on the utility derived from each option – the difference between 

the customer's willingness-to-pay and the batch price. The optimal choice for the customer is the one 

that maximizes this utility. This conceptual framework is widely recognized in the fields of economics 

and pricing literature for its effectiveness in capturing the heterogeneity of customer preferences 

(through individual willingness-to-pay) and the firm’s influence on customer choices (through pricing). 

Grounded in economic theory, this model assumes that individuals' decisions are motivated by 

maximizing perceived value against cost, a particularly apt approach when customers are faced with 

multiple options beyond a mere binary buy-or-not decision. This methodology is often applied in 

literature, including in the work of Braden and Oren (1994), who examined nonlinear (static) pricing, 

and Akçay et al. (2010), who explored multiproduct dynamic pricing. 

Each customer's willingness-to-pay, denoted as �� for a batch of size �, is considered private information 

and thus remains unknown to the firm, rendering �� a random variable. Furthermore, a common 

assumption in literature, found e.g. in Baucells and Sarin (2007), Goldman et al. (1984), Iyengar and 

Jedidi (2012), and Gallego et al. (2020), is that the marginal willingness-to-pay, represented by ���� −

��, is non-negative and diminishes with each additional unit. This structure includes the notion that 

while each additional unit is valued, it is less so than its predecessor. We incorporate this critical aspect 

into our model to realistically simulate customer behavior in scenarios involving batch purchases. 

We employ a model inspired by Iyengar and Jedidi (2012), further refined by Schur (2024), to capture 

this phenomenon. Iyengar and Jedidi (2012) propose a willingness-to-pay function based on known 

parameters, incorporating an error term to account for uncertainty in customer behavior. Schur (2024) 

builds on this by treating the parameters themselves as random variables, representing private 

information. Thus, randomness is introduced directly into the model parameters rather than through an 

error term. Our approach adopts this latter perspective, defining the willingness-to-pay �� for a batch 

size of � by: 

 �� = � ⋅ ∑ (�)����
���     for � = 1, … , �, (1) 

with independent, continuous, and time-homogeneous random variables � and �. In our model, we 

characterize the density functions of the random variables � and � as �� and ��, respectively. 

Correspondingly, their cumulative distribution functions are denoted by �� and ��, with both density 

functions supported on the interval [0, 1]. 

By constraining � within the range [0, 1], we ensure that the marginal willingness-to-pay, defined as 

���� − �� = � ⋅ ��, remains non-negative and is decreasing with respect to the quantity �, assuming 

� ≥ 0. This specification aligns with the earlier-stated common assumption about customer preferences, 

effectively capturing the diminishing value of additional units. The limitation of � to [0, 1] serves 

primarily as a scaling measure, normalizing the marginal willingness-to-pay.  
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Regarding the interpretation of the random variables � and �: � equals the willingness-to-pay for the 

first unit, evident from �� = � (since �� = � ⋅ ∑ (�)��
��� = �), and linearly affects �� = � ⋅

�∑ (�)����
��� � for � ≥ 2. Thus, � can be perceived as the product’s attractiveness to the customer, or more 

formally, as the base willingness-to-pay. Conversely, � does not impact �� = � but plays a crucial role 

in determining the rate at which the marginal willingness-to-pay diminishes with increasing �. This is 

illustrated by the relationship ���� − �� = � ⋅ �� = � ⋅ �� ⋅ ����� = � ⋅ ��� − �����, allowing us to 

interpret � as a measure of the customer’s inclination to stockpile or consume. Essentially, � acts as an 

indicator of consumption patterns, reflecting how the value customers place on additional units 

decreases with the batch size. 

Our approach to modeling customer choice is anchored in the widely accepted random utility model. 

Within this framework, we define a customer's utility for purchasing � units at given prices as the 

difference between their random willingness-to-pay and the corresponding price. Specifically, for a 

price vector �, the utility of purchasing � units, denoted ��(�), is calculated as: 

 ��(�) = �� − ��    for � = 1, … , �. (2) 

Under the assumption of rational behavior, customers aim to maximize their utility. Therefore, a 

customer opts to purchase � units if, and only if, ��(�) represents the maximum utility achievable across 

all possible purchase quantities, including the option not to purchase (��(�) = 0). This modeling 

assumption, in conjunction with the density functions for � and �, allows us to compute the probability 

of a customer purchasing � units. This computation involves determining the probability that a specific 

realization of the random variables � and �, which represent a unique customer profile, results in the 

maximum utility for the purchase of batch size �. 

To visualize this concept, one can imagine mapping out decision regions within the [0, 1]� space, 

identified by combinations of � and � (realizations of � and �, respectively), where the utility of 

purchasing � units surpasses that of any other purchase quantity within the set {0, 1, … , �}. These regions 

are effectively determined by where ��(�) attains its maximum value across all considered purchasing 

options (��(�) = max
���,…,�

���(�)�). Subsequently, the probability associated with � and � falling within 

a particular region reflects the likelihood of a customer, characterized by that specific (�, �) bundle, 

opting to purchase � units. The following figure illustrates these regions, with each one labeled according 

to the batch size � that maximizes utility for customers whose preferences are represented by the (�, �) 

bundles within that region.  
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Figure 1: An example of the location of decision regions for � = � 

Consequently, the choice probability for a customer to purchase � units can be calculated by 

 ��(�) = ∫ ∫ 1
���(�)� ���

���,…,�
���(�)��

(�, �) ��(�) ��(�) ���
� ���

�    for � = 1, … , �, (3) 

where the indicator function 1
���(�)� ���

���,…,�
���(�)��

(�, �) equals 1 if the utility of purchasing � units, ��(�), 

is the maximum among all considered batch sizes. Specifically, this condition is satisfied if the utility 

of purchasing � units, � ⋅ ∑ �����
��� − ��, is greater than or equal to the utility of purchasing any other 

quantity �, � ⋅ ∑ �����
��� − ��, for � = 1, … , �, and also nonnegative. If these conditions are not met, the 

indicator function is 0.  

Alternatively, these selection criteria can be expressed through the relationship between price 

differences and the cumulative discounting effect of purchasing additional units. A customer with 

attributes �, � ∈ [0,1] will purchase � units iff the following condition holds:  

 max
�������

� �����

∑ �����
���

� ≤ � ≤ min
�������

� �����

∑ �����
���

, 1�. 

This expression separates both attributes � and � and simplifies calculating the choice probabilities. 

Furthermore, the fractions within this expression define the decision regions as they mark the boundaries 

of these regions (represented as blue lines in Figure 1). 

To keep notation as short as possible, we further establish the following conventions: �� = 0, �����
∑ ���

���
=

�� for � = 0, max
�������

� �����

∑ �����
���

� = ∞ for � ≠ 1, and min
�������

� �����

∑ �����
���

, 1� = 1 for � = �. 

By utilizing the alternative formulation, we can simplify the choice probability for selling � units to 
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 ��(�) = ∫ ��� � min
�������

� �����

∑ �����
���

, 1�� − �� � max
�������

� �����

∑ �����
���

���
�

��(�) ���
�   

    for � = 1, … , �, (4) 

with (⋅)� = max{⋅, 0}. While this formulation features only one integral, it remains analytically 

challenging. Without further knowledge, particularly about which fractions yield the minimum and 

maximum for any given �, even calculating the purchase probability for a given price vector � becomes 

a tedious task, rendering finding the optimal solution impossible. Consequently, we will put 

considerable effort in refining the formulation and in learning inherent structural properties in Section 

4. 

3.3 Dynamic programming formulation 

In traditional singleunit dynamic pricing, a firm maximizes total expected revenue over the entire selling 

horizon: 

 ��
��(�) = max

����� ∀�∈{�,…,�}
���∑ ��� ⋅ 1{�����}(�)�

��� �: ∑ 1{�����}(�)�
��� ≤ � a. s. �.  (5) 

This optimization problem can be reformulated as the following dynamic program (see, e.g., Talluri & 

van Ryzin, 2004): 

 ��
��(�) = max

����
���(��) ⋅ ��� + ����

�� (� − 1)� + �1 − ��(��)� ⋅ ����
�� (�)�,  (6) 

with boundary conditions ��
��(�) = 0 for � ≥ 0 and ��

��(0) = 0 for � ≥ 0. Here, ��
��(�) denotes the 

optimal expected revenue-to-go from period � onwards. The expectation captures two possible events: 

A sale of one unit occurs with probability ��(��) and the firm immediately obtains a revenue of �� and 

additionally expects a revenue of ����
�� (� − 1) with a reduced stock of � − 1 units from the next period 

onwards. No sale occurs with probability 1 − ��(��). In this case, the firm expects a revenue of ����
�� (�) 

from stock �.  

Building on the formulations (5) and (6), we can develop the corresponding multiunit dynamic pricing 

formulation. As the remaining capacity � (and, thus, the maximum number of purchasable units) varies 

over time, we define a state-dependent action space ℛ� = �� ∈ ℝ�: �� ≥ 0, � = 1, … , �� with ℛ� = ∅. 

The overall target is still the maximization of the total expected revenue: 

 ��(�) = max
��∈ℛ� ∀�∈{�,…,�}

�� �∑ ∑ ��� ⋅ 1
����(��)� ���

���,…,�
����(��)��

(�, �)�
���

�
��� �: ∑ ∑ � ⋅�

���
�
���

1
����(��)� ���

���,…,�
����(��)��

(�, �) ≤ � a. s. �    (7) 

and can be achieved by using the following dynamic program: 

 ��(�) = max
�∈ℛ�

�∑ ��(�) ⋅ ��� + ����(� − �)��
��� + �1 − ∑ ��(�)�

��� � ⋅ ����(�)�,  (8) 
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with boundary conditions ��(�) = 0 for � ≥ 0 and ��(0) = 0 for � ≥ 0. Again, ��(�) denotes the 

optimal expected revenue-to-go from period � onwards (before the arrival of a customer in �).  

With the new formulation, we consider that customers might be willing to buy more than just one unit. 

Moreover, we allow the firm to set batch prices to take full advantage of a nonlinear pricing scheme. 

The expectation now captures � + 1 possible events: With probability ��(�), the firm sells � units and 

immediately earns ��. Additionally, it can expect future revenues amounting to ����(� − �) with a 

reduced stock of � − � units from the next period onwards. With probability 1 − ∑ ��(�)�
��� , the firm 

sells nothing and only faces expected revenue ����(�) from stock � and period � − 1 onwards. We 

denote the optimal batch prices selected in a state (�, �) by ��(�) ∈ ℛ�. 

An alternative formulation of (8) relies on opportunity costs Δ���(�) for selling � units, i.e. 

 Δ���(�) = ��(�) − ��(� − �)   for � = 1, … , �, (9) 

and can be written as 

 ��(�) = max
�∈ℛ�

�∑ ��(�) ⋅ ��� − Δ�����(�)��
��� � + ����(�).   (10) 

This formulation presents several benefits compared to Equation (8). The most immediate benefit is the 

clear indication that optimal prices must exceed opportunity costs. Not meeting this criterion could mean 

that sales do not contribute to an increase in expected revenue, or worse, could result in a decrease in 

overall expected revenue. Furthermore, this formulation highlights the critical role of opportunity costs. 

As the only component that varies with state, opportunity costs are fundamentally responsible for the 

dynamic adjustments in optimal pricing strategies over time. 

Summarizing, the optimization breaks down to maximizing the expected additional gain realized by 

selling something between 1 and � units in period � instead of retaining the capacity for later sales. 

4 Optimality condition, fluid approximation and asymptotic optimal 

solution 

In Sections 4.1 and 4.2, our objective is to streamline the formulation of the probability function in two 

steps. Initially, we introduce appropriate notation and show inherent structural properties, thereby 

formulating a more concise function. Subsequently, we eliminate prices from the action space that do 

not contribute to solving the optimization problem. This allows us to gain additional insights in the 

probability function, leading to a further refinement.  

This refinement enables us to establish optimality conditions for solving the state-wise optimization 

problem. However, these conditions, while essential, prove insufficient for effectively computing a 

solution across the entire sales period. In this context, we introduce a fluid approximation and discuss 

the asymptotic optimality of its solution, a desirable feature we want to preserve for our heuristic 



11 

methods outlined in Section 5. Recognizing that solving the fluid approximation remains complex, we 

propose a modified model that is significantly simpler to solve. This alternative model yields the same 

optimal solution under certain conditions that are straightforward to verify. 

4.1 Refining the probability function 

Despite simplifying the model by eliminating one of the integrals at the end of Section 3.2, the resulting 

probability function remains challenging to manage. Specifically, incorporating the minimum and 

maximum functions throughout the analysis introduces significant complexity. To address this, we 

propose dividing the integration region into distinct segments. This approach allows us to streamline the 

calculation process by substituting min
�������

� �����

∑ �����
���

, 1� and max
�������

� �����

∑ �����
���

� with more manageable 

expressions for each segment.  

We start with introducing the following sets, designed to sort � in such a way that on each set the 

minimum or maximum operator can be substituted: 

 Λ�(�) = �� ∈ [0, 1] | max
�������

� �����

∑ �����
���

� ≤  1 = min
�������

� �����

∑ �����
���

, 1��,  

 Λ��
���(�) = �� ∈ [0, 1] | max

�������
� �����

∑ �����
���

� ≤  �����

∑ �����
���

= min
�������

� �����

∑ �����
���

, 1��, � > �, and  

 Λ��
���(�) = �� ∈ [0, 1] | max

�������
� �����

∑ �����
���

� =  �����

∑ �����
���

≤ min
�������

� �����

∑ �����
���

, 1��, � < �.  

These sets are either empty or an interval. This follows immediately from Lemma 1 and is illustrated in 

Figure 2. In this figure, we can identify specific intervals for the sets under consideration for � = 1: 

Λ��
���(�) = [0,1], Λ�(�) = [0, 0.4], Λ��

���(�) = [0.4, 0.55], Λ��
���(�) = [0.55, 0.826], Λ��

���(�) =

[0.826, 1], and Λ��
���(�) = [1, 1], with their boundaries marked by black lines in the figure. Many of 

these intervals (particularly, Λ��
���(�) with � > 1) are defined by the intersection points of the blue and 

green lines, signifying where the line that constitutes the minimum shifts. To calculate the probability 

of selling a single unit batch (� = 1) in this scenario, it's necessary to evaluate the probability of 

realizations (�, �) falling within the region above the red line and beneath all green and blue lines. By 

identifying these specific sets, we can precisely ascertain which among the green and blue lines 

determines the minimum solution for any given realization �, thus identifying the corresponding 

realization � that result in the sale of one unit. 

Lemma 1  For every � ≠ � with �, � > � and �� − �� ≠ 0 ≠ �� − ��, there is at most one � ∈ (0,1) where 
�����

∑ �����
���

= �����

∑ �����
���

 . For every � ≠ � with �, � < � and �� − �� ≠ 0 ≠ �� − ��, there is at most one � ∈ [0,1] 

where �����

∑ �����
���

= �����

∑ �����
���

. 

Proof: See Supplement S.1. 
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Figure 2: An example of intervals ��(�) and ���
���(�) with � = � and � = � 

Lemma 1, in conjunction with the observation that the equation �����

∑ �����
���

= 1 is satisfied by at most one 

� ∈ [0,1], implies that each curve can only serve as the minimum or maximum exclusively within a 

specific segment. At some point, it will intersect with another curve and will consistently remain either 

above or below the intersecting curve. Consequently, for the various sets of interest – namely Λ�(�) for 

instances where 1 = min
�������

� �����

∑ �����
���

, 1�, Λ��
���(�) for cases where � > �, and Λ��

���(�) for cases where 

� > � – we define their corresponding intervals as ���(�), ��(�)�, ����
���(�), ���

���
(�)�, and 

����
���(�), ���

���
(�)�, respectively. It's important to note that some of these intervals may be empty, and 

thus, boundary values have to be selected accordingly.  

Remark 1  By definition, there is ��
���

(�) ∈ [0, 1] such that ��
���

(�) = ���
���

� ���
���

(�)  � =

���
���

�  ���
���

(�)  �. Moreover, it holds that:  

1. ⋃ ����
���(�), ���

���
(�)���� = ���(�), ��

���
(�)�  

2. ⋃ ����
���(�), ���

���
(�)���� = ���(�), ��

���
(�)� 

Currently, our model requires extensive notation to accurately articulate the probability function. 

Nevertheless, the introduction of the subsequent lemma will significantly streamline the notation 

required, thereby enhancing the brevity and clarity of our presentation. 

Lemma 2  For every � > � it holds that ����
���(�), ���

���
(�)� = ����

���(�), ���
���

(�)�. 

Proof: See Supplement S.2. 
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This lemma not only streamlines our notation but also carries another implication: for � > �, the interval 

����
���(�), ���

���
(�)� defines the region for realization � where the line �����

∑ �����
���

 marks the upper bound for 

all realizations � that specify, in combination with �, all customers that opt to purchase � units. As a 

consequence of Lemma 2, within the same interval, the same line also establishes the lower bound for 

all realizations � that define, in combination with �, all customers that prefer purchasing � units. Thus, 

if this interval is not empty, then this line marks the boundary between opting for � units versus � units. 

We can now shorten our notation to ���(�) = ���
���(�) = ���

���(�) and ���(�) = ���
���

(�) = ���
���

(�). The 

probability function can be written as: 

 ��(�) = ∫ ��(�) ����(�)
��(�) + ∑ ∫ �� � �����

∑ �����
���

� ��(�) �����(�)
���(�)

�
����� −

 ∑ ∫ �� � �����

∑ �����
���

� ��(�) �����(�)
���(�)

���
���     for � = 1, … , �. (11) 

For now, our refinement of the probability function reaches its limit without further specifics on the 

distribution function �� or the structure of possible price vector �. Given our reluctance to (prematurely) 

narrowing our focus to a particular distribution function for �, we shift our attention towards simplifying 

the probability function by examining feasible price vectors. In this endeavor, our goal is to eliminate 

any price vector that does not contribute to our optimization objective, thereby gaining additional 

insights that refine the formulation of the probability function. 

4.2 Action space reduction 

Upon closer examination of our choice model, it becomes evident that we only need to consider a 

specific subset of prices to maximize expected revenue. Consequently, we aim to refine the definition 

of the action space ℛ� by excluding prices that have no impact on our optimization problem. 

The argumentation for deeming certain prices as irrelevant is as follows: Maintaining multiple prices �� 

that effectively nullify demand for � units (i.e., ��(�) = 0) is unnecessary. It suffices to have a single �� 

(depending on ��, … , ����, ����, … , ��) to preserve the option of pricing out � units. Our argumentation on 

determining irrelevant prices follows four steps. 

1. Exclusion of higher prices for smaller batches: We exclude any price �� with �� > ���� 

because customers almost surely have a higher willingness-to-pay for � + 1 units than for � units 

(���� − �� = � ⋅ �� ≥ 0). Consequently, customers would not pay a higher price for � units 

than for � + 1 units. Hence, for �� > ����, it follows that ��(�) = 0. However, the same effect 

can be achieved by setting �� = ����, making prices � with �� > ���� irrelevant.  

2. Exclusion of prices exceeding batch size threshold: Any price �� exceeding � is irrelevant. 

Given that � ∑ �����
��� ≤ � ≤ �� implies that ��(�) = 0, we can drop �� > � and still have the 

possibility to achieve ��(�) = 0 by setting �� = �.  



14 

3. Exclusion of prices with excessive margins: We exclude any price �� for which �� − ���� > 1. 

The rationale behind dismissing these prices is grounded in the following inequality: 

max
�������

� �����

∑ �����
���

� ≥ �������

���� ≥ 1 ≥ min
�������

� �����

∑ �����
���

, 1�, which emerges from the condition �� −

���� > 1. Consequently this leads to ��(�) = � min
�������

� �����

∑ �����
���

, 1� − max
�������

� �����

∑ �����
���

��
�

= 0. 

Therefore, maintaining �� such that �� − ���� = 1 in our action space suffices to nullify demand 

for � units if desired. 

4. Exclusion of prices with excessive comparative margins: We omit prices �� that satisfy the 

condition ��� − �����
�

��� > ����� − ���
�
� . This inequality implies that a customer with a positive 

marginal utility for purchasing the �th unit has almost certainly also a positive marginal utility 

for purchasing the � + 1th unit. This is verified by the proof of the Lemma 3. 

By systematically excluding these prices, we refine our pricing strategy to focus only on those prices 

that impact the solution of our optimization problem. 

Lemma 3  Relevant prices �� are given by ℛ� = �� ∈ ℝ�: 0 ≤ �� ≤ ⋯ ≤ �� ≤ �, �� ≤ �  ∀ �, �� − ���� ≤

1 ��� � ≥ 2, ��� ��� − �����
�

��� ≤ ����� − ���
�
�  ���  2 ≤ � ≤ � − 1�. 

Proof: See Supplement S.3. 

In Section 3.2, we have seen that �� and �� play a crucial role in calculating selling probabilities. With 

the action space reduction, we are now able to shed more light on the definition of these parameters. 

Lemma 4  It holds that ��(�) = 0, ��(�) = (�� − ����)
�

��� = ����(�), 2 ≤ � ≤ �, ��(�) = 1 for all � ∈

ℛ�.  

Proof: See Supplement S.4. 

With Lemma 4, we get closer to deriving a manageable expression of the probability function, albeit 

through an implicit definition of the lower and upper bounds, ���(�) and ���(�) (refer to Section 3.2). 

These bounds are defined either such that ∫  �� � �����

∑ �����
���

� ��(�) �����(�)
���(�) = 0, which does not impact the 

probability function and can thus be disregarded, or as the intersection points between two curves, which 

will be our focus (for an illustrative reference, see Figure 2). 

By identifying these bounds as intersection points, we establish that for almost every upper bound ���(�) 

(with a single exception as noted in Remark 1), there exists a corresponding lower bound ���(�) such 

that ���(�) = ���(�) and �����

∑ ����(�)�
����

���

= �����

∑ ����(�)�
����

���

. Moreover, we observe that small enough 

variations of the price vector at most change the place where both curves intersect, while they do not 
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change which two curves intersect. Particularly, small enough variations of ��, � ∉ {�, �, �}, do not 

change the matching of ���(�) and ���(�). 

Referring to the proof of Lemma 4, we can also add that ��(�) = ��,���(�) and ����(�) = ����,�(�). 

Again, small enough variations in the price vector at most change the place of these intersection points. 

The following remark summarizes the observations above and will come in handy in the development 

of optimality conditions. 

Remark 2  It holds that: 

 For every ���(�) ≠ ��
���

(�) there is ���(�) such that ���(�) = ���(�) and �����

∑ ����(�)�
����

���

=

�����

∑ ����(�)�
����

���

. Moreover, �
���

���(�) = �
���

���(�) for all � and �
���

���(�) = �
���

���(�) = 0 for 

� ∉ {�, �, �}. 

 ����(�) = ����,�(�) with �������

�����(�)�
� = 1. Moreover, �

���
����(�) = �

���
����,�(�) for all � and 

�
���

����(�) = �
���

����,�(�) = 0 for � ∉ {�, � + 1}. 

 ��(�) = ��,���(�) with �������

���(�)�
��� = 1. Moreover, �

���
��(�) = �

���
��,���(�) for all � and 

�
���

��(�) = �
���

��,���(�) = 0 for � ∉ {� − 1, �}. 

4.3 Optimality conditions 

With the previous section, we gathered enough information regarding the probability function to 

advance to our main goal: optimizing value function (10).  

Before we engage the partial differentiation of the value function, we first want to elaborate more on the 

partial differentiation of probability function (11). The calculation of �
� ��

��(�) varies a little depending 

on the following three cases: � > �, � < �, and � = �.  

Lemma 5  It holds: 

1. For � > �,  �
� ��

��(�) = ∫ �
∑ �����

���
 �� � �����

∑ �����
���

� ��(�) �����(�)
���(�)  

2. For � < �,  �
� ��

��(�) = ∫ �
∑ �����

���
 �� � �����

∑ �����
���

� ��(�) �����(�)
���(�)  

3. For � = �,  �
� ��

��(�) = − ∑ ∫ �
∑ �����

���
 �� � �����

∑ �����
���

� ��(�) �����(�)
���(�)

�
����� −

 ∑ ∫ �
∑ �����

���
 �� � �����

∑ �����
���

� ��(�)�����(�)
���(�)

���
���  

Proof: See Supplement S.5. 

With the additional knowledge about the probability function, we now can turn our focus on the first-

order condition. Therefore, we calculate the partial differentiation of value function (10): 
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�
� ��

�� ��(�) ⋅ ��� − Δ�����(�)�
�

���

� = ��(�) + � �
�

� ��
��(�)� ⋅ ��� − Δ�����(�)�

�

���

= ��(�) + � �  
1

∑ �����
���

 �� �
�� − ��

∑ �����
���

� ��(�) ��

���(�)

���(�)

⋅ ��� − Δ�����(�)�
���

���

− � �  
1

∑ �����
���

 �� �
�� − ��

∑ �����
���

� ��(�) ��

���(�)

���(�)

�

�����

⋅ ��� − Δ�����(�)�

−  � �
1

∑ �����
���

 �� �
�� − ��

∑ �����
���

� ��(�) ��

���(�)

���(�)

���

���

⋅ ��� − Δ�����(�)�

+ � �  
1

∑ �����
���

 �� �
�� − ��

∑ �����
���

� ��(�) ��

���(�)

���(�)

⋅ ��� − Δ�����(�)�
�

�����

 

Remark 3  While this expression is still extensive, the level of difficulty strongly depends on the 

distribution of �. For example, if � is uniformly distributed, this expression simplifies to 
�

� ��
�∑ ��(�) ⋅ ��� − Δ�����(�)��

��� � = 2��(�) − ��� �����(�)� − �� ���(�)�� −

∑ ∫  ������(�)�������(�)
∑ �����

���
��(�) �����(�)

���(�)
�
����� + ∑ ∫ ������(�)�������(�)

∑ �����
���

��(�) �����(�)
���(�)

���
���  

Building on the more good-natured expression outlined in Remark 3, we can state the following 

optimality condition. 

Proposition 1  If �~�[0, 1], the optimal solution of (11) meets for every batch size � the following 

condition:  

��(�) = �
�

��� �����(�)� − �� ���(�)� + ∑ ∫  ������(�)�������(�)
∑ �����

���
��(�) �����(�)

���(�)
�
����� −

∑ ∫  ������(�)�������(�)
∑ �����

���
��(�) �����(�)

���(�)
���
��� �  

Proof: See Supplement S.6. 

With this optimality condition, we can calculate the optimal probability to sell at least one unit. Thereby, 

we can make the following observation. 

Remark 4  Let �~�[0, 1]. For the optimal solution �∗ of (10), it holds that ∑ ��(�∗)�
��� = �

�
−

∑ ∫  ������(�)
∑ �����

���
��(�) �����(�∗)

���(�∗)
�
��� . Thus, the overall selling probability is less than or equal to 0.5 and 

decreasing with opportunity costs. 
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States in the last period (� = 1) yield no opportunity costs. There, the optimality condition simplifies to 

��(�) = �
�

��� �����(�)� − �� ���(�)��. Moreover, the optimal overall selling probability is 0.5 

observable by ∑ ��(�)�
��� = �

�
⋅ ∑ ��� �����(�)� − �� ���(�)���

��� = �
�

���(1) − ��(0)� = �
�
. 

In a scenario, where also � is uniformly distributed, the complexity of the customer choice model is 

further reduced. This, in turn, allows us to derive the following refinement of Proposition 1. 

Proposition 2  Let �, �~�[0, 1]. If Δ�����(�) = 0 for every � ≤ �, the optimal solution for (10) is an 

interior point of ℛ� and fulfills ��(�) = �
�

�����(�) − ��(�)� for every � ≤ �.  

Proof: To prove that the optimal solution �∗ is an interior point, we show ��(�∗) ≠ 0 for every � by 

contradiction. To achieve this, we leverage the observation that ��(�) ≠ 0 is equivalent to ��(�) <

����(�), for �, �~�[0, 1].  

We assume that for the optimal solution �∗ ∈ ℛ� there exists a batch size � with ��(�∗) = 0. In the 

following, we focus on a single �. However, the technique we use in this proof could be repeatedly 

applied (with small adjustments) to contradict optimal solutions with several batch sizes � such that 

��(�∗) = 0. 

In a first step, we modify the optimal solution by slightly decreasing ��
∗ to ��

∗ − � with � > 0 small 

enough. We denote this modified version by �∗,�. With �∗,�, the probability to sell a batch of size � is 

positive as ��(�∗,�) < ����(�∗,�).  

� > 1: 

We recall the argumentation used in Lemma 4 to conclude that ��(�∗,�) = �����(�∗,�) − ��(�∗,�)� +

 ∫  ����
∗,� ���

∗,�

��  ���(�∗,�)
����(�∗,�) − ∫

��
∗,������

∗,�

����  ���(�∗,�)
��(�∗,�)  with �(�∗,�) = ����

∗,� ���
∗,�

��
∗,������

∗,� = ����
∗ ���

∗��
��

∗�������
∗ . This �(�∗,�) exists for 

every � that is small enough. 

Plucking �∗,� into the first partial deviation leads to: 

�
���

�� ��(�) ⋅ ��� − Δ�����(�)�
�

���

��

���∗,�

= 2 ⋅ ��(�∗,�) − �����(�∗,�) − ��(�∗,�)�

= 2 ⋅

⎝

⎜
⎛

�����(�∗,�) − ��(�∗,�)� +  �  
����

∗,� − ��
∗,�

��  ��

�(�∗,�)

����(�∗,�)

− �
��

∗,� − ����
∗,�

����  ��

�(�∗,�)

��(�∗,�)
⎠

⎟
⎞

− �����(�∗,�) − ��(�∗,�)� 
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As 1 ≥ ���
∗,������

∗,� �
�

�����
∗,� ���

∗,��
��� ≥ �

�
 for � small enough, it holds that �����(�∗,�) − ��(�∗,�)� +

 ∫  ����
∗,� ���

∗,�

��  ���(�∗,�)
����(�∗,�) − ∫

��
∗,������

∗,�

����  ���(�∗,�)
��(�∗,�) < ����(�∗,�)���(�∗,�)

�
. Consequently, it holds that 

�
���

�∑ ��(�) ⋅ ��� − Δ�����(�)��
��� ��

���∗,�
< 0. 

Based on the negativity of the partial deviation, the value function is strictly decreasing for every �∗,� 

(with � > 0 small enough). Thus, in contradiction to the optimality of �∗, any �∗,� yields higher expected 

revenues than �∗. A similar argumentation works for �� if we assume ��(�∗) = 0.  

� = 1: 

Our assumption of ��(�∗) = 0 implies that ��
∗ = ��

∗. To show the suboptimality of this condition, we 

need to examine two cases: ��
∗ > exp(−0.5) and ��

∗ ≤ exp(−0.5). First, we assume that ��
∗ >

exp(−0.5).  

By definition of ��(�∗,�) (cf. (11)), ��(�∗,�) = (��
∗,� − ��

∗,�) +  ∫  ��
∗,����

∗,�

�
 ��

��
∗,����

∗,�

��
∗,�

��
∗,����

∗,� −  ∫ ��
∗,� ��

��
∗,����

∗,�

��
∗,�

� . 

Solving the integrals leads to ��(�∗,�) = − log(��
∗,�) ⋅ (��

∗,� − ��
∗,�). It holds that �

���
�∑ ��(�) ⋅�

���

��� − Δ�����(�)���
���∗,�

< 0 for ��
∗,� ∈ (exp(−0.5), ��

∗,�). From here on, the same argumentation as 

above applies. 

Next, we assume that ��
∗,� ≤ exp(−0.5). As every customer with � ⋅ (1 + �) ≥ ��

∗,� is purchasing at 

least 2 units, we can conclude that ∑ ��(�∗,�)�
��� ≥ 1 − ∫ ��

∗,�

���
���

� = 1 − ��
∗,� ⋅ (log(2) − log(1)) ≥ 1 −

exp(−0.5) ⋅ log(2) > 0.5. Since the optimal solution must fulfill the condition ∑ ��(�)�
��� = 0.5 (cf. 

Remark 3), ��
∗,� ≤ exp(−0.5) cannot occur and has no relevance for our proof. 

All in all, we have shown that � with �� such that ��(�) = 0 cannot be an optimal solution. This 

ultimately leads to the statement that the optimal solution is an interior point of ℛ� and has to fulfill the 

first order condition.             □ 

Although we have developed the optimality conditions, finding all solutions in every state that fulfill 

these equations is a difficult task. We are facing a system with � nonlinear equations that are additionally 

plagued by integrals and implicitly defined variables. Most of these difficulties arise from the analytical 

intractability of the choice model. Thus, online solving (10) to optimality in every state is out of scope. 

Consequently, this necessitates the adoption of heuristic methods. Before exploring our heuristic 

approaches, we first consider theoretical performance guarantees and establish methodologies to ensure 

these guarantees within our algorithms. 
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4.4 Fluid approximation and asymptotic optimality 

Asymptotic optimality is a desirable property for a heuristic solution method to ensure theoretical 

performance guarantees. In literature (see, e.g., Maglaras & Meissner, 2006), this is often ensured by 

the solution of a deterministic fluid model. 

This section is built as follows: We start with formulating the deterministic fluid model and discussing 

the asymptotic optimality of its solution. The analytical complexity introduced by our choice model 

necessitates the adoption of a simplified, alternative model that not only provides an upper bound to the 

fluid model but also is less complex. We culminate by demonstrating that the optimal solution derived 

from the modified model retains its optimality in the original fluid model, achieving identical objective 

outcomes. 

4.4.1. Original fluid approximation 

In the fluid model, we assume that capacity is continuously divisible, and demand is no longer given by 

a stochastic progress. It is rather deterministically determined by its rate and, thus, we assume that 

customers purchase continuous fractions of batches. 

We denote deterministic continuous demand for batch � at time � by ��
�(��) with ��

�(��) = ��(��) and 

capacity is depleted by ∑ � ⋅ ��
�(��)�

���  at time �. The fluid model is given by: 

 max
��∈ℛ� ∀�

�∑ ∑ ��� ⋅ ��
�(��)�

���
�
��� ∶  ∑ ∑ � ⋅ ��

�(��)�
���

�
��� ≤ � ��� �� ≥ 0� 

With a time-homogeneous demand function, one can easily verify that the optimization problem above 

is equivalent to: 

 max
�∈ℛ�

�� ⋅ ∑ �� ⋅ ��
�(�)�

��� ∶  ∑ � ⋅ ��
�(�)�

��� ≤ �
�

 �   (12) 

With this equality, the optimization problem simplifies to a static pricing policy that proves optimal for 

the fluid model. Notably, the fluid model (12) can be brought into the form of the multiproduct fluid 

model examined by Maglaras and Meissner (2006). Similarly, their proof regarding asymptotic 

optimality of the fluid approximation’s solution also holds for the static pricing policy received by (12). 

Applying this static policy in our dynamic setting is therefore asymptotically optimal in a regime where 

demand and capacity grow proportionally large. This definition is called the first-order asymptotic 

optimality criterion by Gallego and van Ryzin (1997) and Cooper (2002). Moreover, Maglaras and 

Meissner (2006) show that resolving the fluid policy throughout the selling horizon is again 

asymptotically optimal. 

Remark 5  The optimal solution of the unrestricted version of (12) is equivalent to the optimal solution 

of the dynamic model (10) in states � = 1. Thereby, for �, �~�[0, 1],, Proposition 2 also defines the 

optimal solution for this case. If this solution does not fulfill ∑ � ⋅ ��
�(�)�

��� ≤ �
�
, we can still leverage 

�
� ��

�∑ ��(�) ⋅ ��� − ������(�)��
��� � = ��(�) − �

�
�����(�) − ��(�)� to find the optimal solution. 
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Solving the fluid approximation is less complex than solving the dynamic program since it involves only 

one stationary optimization instead of up to � ⋅ � different state-wise optimizations. Furthermore, in this 

stationary optimization, we do not have to account for opportunity costs, which simplifies the optimality 

condition. However, this optimality condition still involves a system of � non-linear, dependent 

equations that have to be solved, motivating our search for further simplifications. 

4.4.2. Modified fluid model 

The existing fluid model encounters analytical challenges due to the complexity introduced by our 

choice model. To address this, we introduce a modified fluid model that simplifies the choice model, 

thus facilitating a more manageable analysis. 

Instead of calculating the probability that ��(�) = max
���,…,�

���(�)�, we now calculate the probability that 

��(�) = max
���,���,�,���

���(�)�. Thereby, we reduce competition between available options and, thus, 

only compare three instead of � − 1 options. We denote demand by this modified choice model as 

��
�,�(�) and write ��

�,�(�) = ℙ ���(�) = max
���,���,�,���

{��(�)}� ≥ ��
�(�). Technically, through the 

alternation, the choice model is no longer a choice model. By summing up all demand rates, we get a 

value greater than or equal to 1, i.e. ∑ ��
�,�(�)�

��� ≥ ∑ ��
�(�)�

��� = 1, which does not satisfy one of the 

core assumptions regarding choice models. The modified fluid model is given by: 

 max
�∈ℛ�

�� ⋅ ∑ �� ⋅ ��
�,�(�)�

��� ∶  ∑ � ⋅ ��
�,�(�)�

��� ≤ �
�

 �   (13) 

 

The optimal solution of this modified model is an upper bound to (12). This can be verified as follows: 

The optimal solution �∗ of (12) is either feasible for (13) or ∑ � ⋅ ��
�,�(�∗)�

��� > �
�
. If it is feasible, the 

statement is obviously true considering ��
�,�(�∗) ≥ ��

�(�∗). In the letter case, we can increase �∗ in such 

a way to �∗∗ that ��
�,�(�∗∗) = ��

�(�∗). Thereby, we impose the same demands with higher prices. 

Similar considerations as in Section 4.3 lead to the following remark. 

Remark 6  With ��
�,�(�), the statement of Remark 5 holds analogously. 

This modification significantly reduces complexity in our choice model (see Supplement S.8 for a 

calculation of ��
�,�(�) for a scenario where �, �~�[0, 1]). This adjustment enables the efficient 

numerical determination of the optimal solution �∗ for the modified fluid model, under scenarios where 

parameters �, �~�[0, 1]. Identifying �∗ is merely the initial phase; the subsequent and critical phase 

involves validating its optimality across both the modified and original fluid models. Utilizing the fact 

that the modified model constitutes an upper bound to the original model, it suffices to verify that �∗ is 

feasible for the original model and results in the same objective value. To facilitate this verification, we 

propose an approach that avoids the exhaustive checking whether ��
�,�(�∗) = ��

�(�∗) for every �. 
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Instead, we introduce a set of straightforward and verifiable conditions, designed to simplify the process 

of proving �∗'s optimality for the original fluid model (12). 

Proposition 3  If � meets the conditions 1.-3., then ��
�,�(�) = ��

�(�) for every �: 

1. ��
���

(�) ≤ �������

�������
 for every �, with 1 < � < �, 

2. ��
���

(�) ≤ ����
���

(�) for every �, with 1 ≤ � < �, 

3.  ∑ ���
���

(�)�
���

���
��� = ��

�������
. 

Proof: See Supplement S.7. 

In our numerical study, we calculated the optimal solution for the modified fluid model for every 

combination of � ≤ 40 and � ≤ 120, under the assumption that �, �~�[0, 1]. The conditions of 

Proposition 3 were always fulfilled. Therefore, in these instances, this solution could be used as a static 

pricing policy that is asymptotically optimal in our dynamic setting. The same holds for a policy that 

periodically solves the modified fluid model with actualized capacity and time-to-go. Moreover, any 

policy that yields higher expected revenues at every stage of the optimization problem is again 

asymptotically optimal. This insight lays the foundation for ensuring asymptotic optimality of our 

heuristics. 

5 Asymptotically optimal heuristics 

In this section, we construct three heuristics to solve the problem regardless of its analytical 

intractability. Two of these approaches are based on the results of Schur (2024) and use the optimal 

solution in a setting where the firm has access to customers’ private information, i.e., their base 

willingness-to-pay and their consumption indicator. respectively. The third approach can be described 

as a decomposition in units. Thereby, we allow customers to buy the �th unit of the product without 

buying the units 1, 2, … , � − 1. Even though this does not reflect reality, it constitutes an easy to solve 

optimization problem, enabling us to devise batch pricing strategies for the original problem based on 

the solutions obtained. 

Reflecting on the fluid model's asymptotic optimality discussed previously, we aim to preserve this 

property within our heuristic frameworks. To this end, we evaluate the performance of each heuristic 

against the fluid model's solution in every state, adopting the superior option. This systematic 

comparison ensures that our heuristics not only address the problem's intractability but also maintain 

theoretical performance integrity. 
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5.1 Approaches 1 and 2: Expected optimal batch prices  

With the results of Schur (2024), we can efficiently compute realization-dependent optimal batch prices 

���(�|�) and ���(�|�) for realization � and �, respectively. Technically, these realization-dependent batch 

prices are themselves random variables, raising the following idea: By calculating the expected value of 

these realization-dependent optimal batch prices, we obtain a reliable estimate for the optimal solution 

of optimization problem (8). 

Both approaches follow the same idea, differing only in the determination of the realization-dependent 

optimal batch prices: ���(�|�) for Approach 1 and ���(�|�) for Approach 2. Beyond this distinction, both 

approaches follow the same subsequent steps. Consequently, we will explain the remaining steps 

without distinguishing between both approaches and write ���(�|�) instead of ���(�|�) and ���(�|�) to 

denote the realization-dependent optimal batch prices. 

This framework is applicable across a wide spectrum of distribution functions, including, but not limited 

to, uniform, triangular, normal, exponential, Weibull, Gumbel, and gamma distributions, along with 

their truncated versions, albeit with some constraints on parameter selections (as detailed in Schur, 

2024). Notably, for scenarios where �~�[0, 1], Approach 2 provides a closed-form expression for the 

realization-dependent optimal batch prices: ���(�|�) = �
�

�∑ �����
��� + ������

� (�)�, with � ≤ ��(�|�) =

���
���,…,�

 ��: ������
� (� − � + 1) < �����.  

Building on these realizations-dependent optimal batch prices, we start our heuristics by building 

expected optimal batch prices: 

 ���
�(�) =

∫ ���(�|�)⋅�{����(�|�)} �(�) ���
�

∫ �{����(�|�)} �(�) ���
�

    for � = 1, … , �, (14) 

More precisely, this formulation results in conditional expected optimal batch prices, where we only 

take realizations of � and � into account that lead to possible economic sales, i.e. ����,�(�| ⋅) −

���(�| ⋅) ≥ Δ�����
� (� + 1 − �). Other realizations are economically irrelevant and can distort results, 

given the lack of a clear pricing strategy in these cases. Thus, these events where we refrain from selling 

are not used to find overall good batch prices. 

Except for the scenario where we have a closed-form expression of ���(�|�), we resort to numerically 

calculating ���(�|�) for as many realizations � as possible to accurately derive ���
�(�). Finally, we 

compare expected revenue-to-go derived by expected optimal batch prices ���
�(�) and the solution of the 

fluid approximation ���
��(�): 

 ��
�(�) = max

�∈���
�(�),��

��(�)�
�∑ ��(�) ⋅ ��� + ����

� (� − �)��
��� + �1 − ∑ ��(�)�

��� � ⋅ ����
� (�)�, (15) 

with the same boundary conditions as the original problem (8), applying our original probability function 

��(�). The better-performing batch prices are then adopted by our heuristics.  
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Remark 7  By using suboptimal batch prices, we get a lower bound to optimization problem (8). Thus, 

it holds that ��(�) ≥ ��
�(�) for every (�, �). 

We sum up the first two heuristics that are based upon the idea of expected optimal batch prices by the 

following pseudo code: 

Pseudo code Approaches 1 and 2: Expected optimal batch prices 

Input:  time horizon �, starting stock �  

Output: batch prices for every batch size � and state (�, �): ���
�(�) 

1. Initialize value functions ��
�(�) = 0 for every � = 0, 1, … , � and ��

�(0) = 0 for every � =
0, 1, … , �  initialize boundary conditions 

2. For � = 1, 2, … , � do  loop over time horizon 

2.1. For � = 1, 2, … , � do  loop over capacity 
2.1.1. Calculate ���

�(�) for every � = 1, 2, … , �  calculate expected optimal batch prices 
2.1.2. Calculate ��

�(�) with (15)   calculate expected revenue-to-go 
2.1.3. Save maximizing price vector of (15) as asymptotically optimal solution 

5.2 Approach 3: Decomposition in units  

Our next algorithm employs a decomposition strategy. The basic idea is that customers have the 

flexibility to buy the �th unit of the product even though they might not buy units 1 to � − 1. As every 

unit of the product is the same, there is no distinction between the 1��, 2nd or �th unit other than the 

number customers have already in their basket. Thus, this decomposition is merely theoretical without 

having immediate practical applicability. However, it results in a greatly simplified optimization 

problem. A hypothetical customer now faces � distinct binary decisions instead of one decision with 

� + 1 options. This, in turn, enables us to solve � distinct and rather simple independent optimization 

problems instead of one complex problem. With this simplification, we can derive batch prices that can 

be used as practical estimations for the optimal batch prices to optimization problem (8). 

To consider this decomposition, we must change the customer choice model. Customers still strive to 

maximize their utility. But, instead of purchasing � units if and only if ��(�) = max
���,…,�

���(�)� with 

��(�) = 0 denoting the no-purchase option, they decide for every single unit whether they want to 

purchase it or not. This decision is based upon whether the additional willingness-to-pay for the �th unit 

is at least as high as the additional price the customer has to pay, i.e. �� − ���� = � ⋅ (�)��� ≥ �� −

����. If the customers decide to purchase the �th unit, they must pay �� − ����. For example, for given 

batch prices, a customer might only be willing to purchase the second and fourth unit due to the 

willingness-to-pay curve. In this case, the customer pays (�� − ��) + (�� − ��) to get 2 units of the 

product in total. 
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The decomposition approach reduces the complexity of the choice model. The model itself becomes 

easier as the decision between several options is broken down to several binary independent decisions. 

This method avoids the need to determine a single price vector that encompasses all batch prices and to 

predict the customer's response to this vector comprehensively. Instead, the firm's pricing strategy is 

divided into � separate decisions, each focused on setting the price for the �th unit, while considering 

the probability of its purchase (which happens solely based on its price). Therefore, the decision variable 

becomes the price of the �th unit, ��,� = �� − ����. The optimization problem we are now focusing on 

is given by: 

 ∑ � max
��,���

���,����,�� ⋅ ���,� − Δ�����
� �� − (� − 1)�����

��� + ����
� (�),  (16) 

with ��,����,�� denoting the probability that a customer is purchasing the �th unit of the product and 

����
� (�) denoting the expected revenue-to-go. 

Probability ��,����,�� only depends on ��,� and can be calculated by ��,����,�� =

∫ ∫ 1��⋅(�)������,��(�, �) ��(�)��(�) ���
� ���

� = ∫ 1 − �� ���,�

����� ��(�)���
� . Optimization problem (16), 

which is the sum of � singleunit dynamic pricing problems, greatly simplifies the search for the optimal 

solution. With ��
�,�(�) denoting the optimal solution to (16), we can use ���

�(�) = ∑ ��
�,�(�)�

���  as a 

practical estimation of the optimal batch prices for the original optimization problem (8). Lastly, 

applying our original probability function ��(�), we evaluate expected revenue-to-go derived by ���
�(�) 

and by the solution of the fluid approximation ���
��(�): 

 ��
�(�) = max

�∈���
�(�),��

��(�)�
�∑ ��(�) ⋅ ��� + ����

� (� − �)��
��� + �1 − ∑ ��(�)�

��� � ⋅ ����
� (�)�. (17) 

The boundary conditions are again given by ��
�(�) = 0 for � ≥ 0 and ��

�(0) = 0 for � ≥ 0. 

Remark 8  By using suboptimal batch prices, we get a lower bound to optimization problem (8). Thus, 

it holds that ��(�) ≥ ��
�(�) for every (�, �). 

The heuristic can be summed up by the following pseudo code: 

Pseudo code Approach 3: Decomposition of units 

Input:  time horizon �, starting stock �  

Output: batch prices for every batch size � and state (�, �): ���
�(�) 

1. Initialize value functions ��
�(�) = 0 for every � = 0, 1, … , � and ��

�(0) = 0 for every � =
0, 1, … , �  initialize boundary conditions 

2. For � = 1, 2, … , � do  loop over time horizon 

2.1. For � = 1, 2, … , � do  loop over capacity 
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2.1.1. Solve optimization problem (16) to get ��
�,�(�) for every � = 1, 2, … , �  calculate optimal  

 price for the �th unit for every � 

2.1.2. Calculate ���
�(�) = ∑ ��

�,�(�)�
���  for every � = 1, 2, … , �  calculate proxy for  

 optimal batch prices 
2.1.3. Calculate ����

� (�) with (17)   calculate expected revenue-to-go 
2.1.4. Save maximizing price vector of (17) as asymptotically optimal solution 

6 Numerical studies 

In this section, we examine the performance of all heuristics outlined in the previous section. 

Nevertheless, we also implemented and simulated the special case PI where the firm can observe next 

customers’ consumption indicator (refer to Schur, 2024). Thereby, we get an upper bound for our 

unknown optimal solution and can compare our heuristics against it. 

To evaluate our heuristics, we implemented the following mechanisms: 

 �(�) and �(�) are mechanisms to approximately solve (8) based on the idea of expected optimal 

batch prices (Section 5.1). 

 D is a mechanism to approximately solve (8) based on a decomposition in units (Section 5.2). 

 S is a mechanism that solves a standard singleunit dynamic pricing problem and, thereby, ignores the 

fact that customers might be willing to purchase more than just one unit. As a singleunit dynamic 

pricing procedure results in a price for only one unit of the product, we then extend it in a linear 

manner to get batch prices. 

 L is a mechanism that solves (8) numerically but with an additional constraint that restricts the batch 

prices to a linear pricing scheme, i.e. �� = � ⋅ �� for every �. Thus, the optimization problem simplifies 

as we only have one decision variable. 

 PI is a mechanism where we observe customers’ consumption indicator before quoting batch prices; 

the corresponding optimization model is given in Schur (2024). This mechanism sets optimal batch 

prices in a setting where the firm has additional information, and thus, yields an upper bound to our 

setting. 

Besides our heuristics, we have chosen S and L for our numerical studies, as they might be applied the 

most in practice. Mechanism S is conducting standard dynamic pricing and, thus, ignoring multiunit 

demand. Firms recognizing that customers may purchase more than a single unit are likely to adopt 

mechanism L, as this is the obvious choice without specialized optimization problems that merely exist 

in literature. The last mechanism, denoted as PI, constitutes an upper bound of the (unknown) value of 

the objective function (8) and thereby provides a benchmark for our heuristics. However, we should 

keep in mind that PI determines the revenue that could be earned if the firm has additional information 
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about customers’ preferences, and thus, shows the inherent advantage of this special case in comparison 

to our case. 

Every mechanism provides a policy that contains batch prices. To evaluate the mechanisms, we perform 

simulation studies We choose the setting for our study similar to Gallego et al. (2020), resulting in the 

choice of � = 1, … , 40, � = 1, … , 120, and the uniform distribution of � and �. We generated 10,000 

customer streams in advance and applied every policy we derived from the mechanisms to these streams 

separately. One simulation run consists of a complete sales process containing � specific customers and 

a batch price quoted in every period (depending on the capacity left) according to the mechanism 

investigated. After observing the decision of the current customer, a new batch price is set for the next 

customer. Repeating this procedure until the end of the selling horizon leads to a total revenue for this 

simulation run. By averaging the total revenues from 10,000 simulation runs, we obtain a mean revenue 

for each mechanism. Since all mechanisms are evaluated using the same 10,000 customer streams, their 

simulated revenues are directly comparable.  

In the following, we show simulated revenues of all mechanism and compare them to the upper bound 

received from special case PI. Thereby, we can observe that heuristics D and �(�) are resulting in the 

highest revenues, while �(�) is slightly behind. We then examine the selling strategies of all heuristics 

by analyzing simulation results. Moreover, we discuss several evolutions of batch prices of both best 

performing heuristics D and �(�). As we thereby observed a piecewise-linear pattern in batch prices, 

we finally conducted another numerical study to evaluate a piecewise-linear pricing scheme. This study 

shows that such a pricing scheme is well performing and might be an easy to communicate alternative. 

6.1 Comparison in terms of revenue earned 

In this section, we show the simulated revenues of the first five mechanisms for the investigated settings. 

To shorten tables and give a more lucid overview of the study, we provide only a subset of the studied 

settings in the following table. 

Table 1: Revenues for � ≤ ���, � = �� 

� = ��  �(�) �(�) D S L  

� = �  0.91 0.91 0.91 0.91 0.91  

� = ��  16.18 16.23 16.27 15.12 15.74  

� = ��  23.85 24.07 24.12 22.16 22.86  

� = ��  28.66 29.03 29.09 25.24 27.32  

� = 1��  32.01 32.51 32.55 27.02 30.43  
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Table 1 shows simulated revenues of all mechanisms with � ∈ {1, 30, 60, 90, 120}. For � = 1, every 

mechanism performs identical as there is not enough stock to sell more than one unit, and thus, the 

consideration of multiunit purchases is not possible. As we can see, the developed heuristics 

(mechanisms �(⋅) and D) are also able to calculate the optimal price for the singleunit case. The more 

capacity, the higher is the importance of attending customers’ demand for more than one unit. This can 

be seen by comparing mechanisms S and L where the only difference between those mechanisms is that 

L is aware of customers’ multiunit demand while S is ignoring it. Except � = 1, L is outperforming S in 

every setting. This holds all the same for the cases we did not incorporate in this paper. On the other 

hand, L is dominated by our heuristics. Even though �(⋅) and D are only heuristics while L numerically 

finds optimal linear batch prices, the advantage of setting nonlinear batch prices (like �(⋅) and D do) is 

overcompensating the incapability to solve optimization problem (8) analytically. Finally, comparing 

our heuristics to each other, we can observe that �(�) results in the lowest expected revenues while 

�(�) and D are performing nearly identical. 

Applying �(⋅) and D is clearly beneficial in comparison to L and even more so to S. As we do not know 

the optimal solution to optimization problem (8), we cannot test these mechanisms against it. However, 

to get a feeling for the performance of all mechanisms, we show the simulated revenues relative to an 

upper bound. Therefore, we additionally simulated revenue for a policy where we were able to observe 

the realization of the random consumption indicator � of an arriving customer before quoting the optimal 

batch prices (cf. Schur, 2024). We then divided simulated revenues received from each mechanism by 

the simulated upper bound received from PI and, thereby, get the percentage every mechanism obtains. 

These percentages are shown in the following figure. In Table 1, we have seen that �(�) and D are 

performing nearly identical. Thus, we opted to only show the line of D representing both mechanisms. 

We used dotted lines to separate mechanisms that are quoting linear batch prices from the other 

mechanisms that are following a nonlinear pricing scheme. We let the ordinate start at 0.5 to demonstrate 

differences between the curves more clearly. 

 

Figure 3: Performance of all mechanism relative to an upper bound for � ≤ ���, � = �� 
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Figure 3 shows the same order in the mechanisms for every capacity like Table 1, i.e. � ≥ � ≥ � ≥ �. 

The gap between the upper bound and any other mechanism is increasing in capacity. Probably, this is 

due to the increasing advantage of knowing the consumption indicator in the upper bound mechanism 

for higher �. Through full information about customer’s consumption indicator and the ability to adapt 

batch prices to this knowledge, the revenue earned ought to be higher than the (unknown) value of the 

objective function from optimization problem (8) by a fair amount. This is particularly true whenever 

there is enough capacity to sell several units to every customer. Thus, we do not assume the gap between 

upper bound and both heuristics to widen solely because D and �(⋅) are performing less good for higher 

capacity. Another indication for this assumption is that S, the mechanism where multiunit demand is 

ignored, is decreasing at a high pace while D, E, and L are becoming increasingly stable at the end of 

the curve.  

Table 1 already revealed that D and �(�) are performing nearly identical even though the idea behind 

both heuristics is different. However, �(�) is not so far away from these two mechanisms. This could 

be an indication that all heuristics (especially D and �(�)) are (strongly) bounded by the optimal 

solution of optimization problem (8) and, thus, are a good approximation. Finally, we note that our 

heuristics are performing remarkably better (with a small plus for D) than the mechanisms that are most 

likely applied in practice, L and S. Overall, D and �(�) are outperforming �(�) particularly for higher 

capacities. 

6.2 Selling strategies of the heuristics 

As our heuristics are performing similarly, we want to analyze their strategies. Therefore, we have a 

closer look to the simulated mean revenue and mean purchases at every point in time. We perform this 

(and any following) analysis on a smaller setting, to enhance the visibility of effects, and start the 

observation in state (�, �) = (10, 20). In the following figures, we track purchases and average the 

resulting revenues at every period and over all customer streams. 

 

Figure 4: Mean revenues (left) and mean purchases (right) at every point in time, � = ��, �, … , � 
with � = �� 
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Although D, �(�), and �(�) are performing similarly overall, the strategies seem to be quite different. 

Figure 4 shows that �(�) is superior to �(�) in terms of mean revenue at the end of the selling horizon, 

while the opposite is true at the beginning. The line representing the strategy of D is running in between 

of the lines representing �(�) and �(�). Mean revenues of each heuristic are decreasing over time. 

While �(�) performs quite stable throughout the whole selling process, the curve representing �(�) is 

declining at a more pronounced rate.  

Mean purchases are around 1.5 for every mechanism. The curve resulting from �(�) is declining over 

time, while the curves of the other two mechanisms are quite stable with a sharp, single uptick at the 

end of the horizon. Over the whole horizon, �(�) is selling more units than the other two heuristics. D 

and �(�) are selling similar quantities, with D being slightly above �(�) overall. This suggests that 

�(�) is pricing units lower than the other two mechanisms. 

6.3 Pricing path of D and �(�) 

We have already seen in Table 1 that D and �(�) are resulting in the highest revenues. By examining 

pricing paths received by these heuristics, we get insights about the structure and behavior of overall 

well-performing pricing policies. In the figures we present in this section, the �th curve (counting from 

the bottom) corresponds to the batch price of � units. The starting inventory is � = 20 units at period 

� = 10. 

 

Figure 5: Evolution of batch prices without a purchase for D (left) and E(�) (right) over � =
��, �, … , � and � = ��  

In Figure 5, we have depicted the case where no customer wants to purchase anything. Over the entire 

selling horizon, mechanism D quotes higher prices than mechanism �(�). Additionally, prices from 

both mechanisms are decreasing in time with one exception: some batch prices in � = 1 are higher than 

those in � = 2. This structural break is a result of enforcing asymptotic optimality. In � = 1, every 

heuristic applies the solution of the fluid approximation  ��
��(�) as it is optimal in the last period (refer 

to Remark 4). For � ≥ 2, the maximization picks ��
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 ��
�(�)(�), the resulting curves have a similar structure. This indicates an underlying structure good 

policies have in common.  

Batch prices for small numbers of units are virtually linear in batch size (apart from the first unit, the 

second, third, etc. units cost nearly the same). For large numbers of units, batch prices are convexly 

increasing in batch size. With a concavely increasing willingness-to-pay curve, these pricing schemes 

automatically prevent selling a large batch or even the whole stock (� = 20) to only one customer. 

Finally, it is notable that prices for small batches merely change over time whereas prices for big batches 

noticeably decrease.  

In Figure 4, we have seen that both heuristics result in selling processes where a customer on average 

purchases approximately 1.5 units. Therefore, we also want to examine the evolution of batch prices in 

a scenario where alternately two units and one unit are sold, starting with a purchase of 2 units in � =

10. As the firm cannot offer batches that are not covered by capacity any longer, most of the curves are 

terminated during the selling horizon. 

 

Figure 6: Evolution of batch prices with purchases at every period for D (left) and E (right) over 
� = ��, �, … , � and � = ��  

The pattern the curves draw looks nearly the same for both heuristics. Batch prices obtained by �(�) 

are lower than those obtained by D. The gaps between batch prices are nearly same-sized for smaller 

batches (again, starting with the two-unit batch) and are increasing for bigger batches. After selling, 

batch prices for bigger batches increase. This effect is more pronounced after selling two units in 

comparison to selling one unit. It is a well-observed pricing behavior in (standard) dynamic pricing that 

prices increase after a sale took place. However, this only holds partially in our multiunit setting as 

prices for small batches usually decrease slow and steady over the selling horizon. 

To sum up, we have seen two (unusual) effects in Figures 5 and 6: First, prices for small (in comparison 

to remaining stock) batches are decreasing over time regardless whether a sell takes place or not. This 

holds for the discussed settings with a reasonably large stock, i.e. �
�

= 2. For a small stock, i.e. �
�

= 2, 

prices for small batches were not always decreasing from one period to the next. To shorten this paper, 
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we excluded the corresponding figures. Second, prices for small and medium batches are increasing 

approximately linearly in size – starting with the two-unit batch. 

6.4 Piecewise-linear pricing 

Section 6.3 suggests that the marginal prices of additional units (� ≥ 2) are nearly constant. To evaluate 

the loss in revenue if we enforce a piecewise-linear pricing scheme, we implemented mechanism PL: 

 PL is a mechanism that solves (8) numerically but with an additional constraint that restricts the batch 

prices to a piecewise-linear pricing scheme with �� and �� = (� − 1) ⋅ (�� − ��) + �� for � ≥ 2. 

This pricing scheme inherits an easy structure, and thus, could be easily applied in practice because a 

firm has only to quote a price for the first and a price for subsequent units. This applicability and the 

observations made in Section 6.3 are the main reason why we conducted the following simulation study. 

We have seen in Section 6.1 that D and �(�) are the mechanisms that result in the highest and nearly 

the same revenues. Thus, we show simulated revenues arising from PL relative to those received by D. 

Similar to the approach used for creating Figure 3, we calculate the percentages of D’s revenue PL 

obtains. These percentages are shown in the following figure. We let the ordinate start at 0.5 to 

demonstrate differences between the curves more clearly. 

 

Figure 7: Performance of mechanism PL relative to D for � ≤ ��, � = �� 

Overall, the piecewise-linear pricing scheme performed well. For � = 1 and � = 2 the results of D and 

PL are (as expected) identical. In both cases, there is no actual restrictions on batch prices as there are 

at most two units that can be sold. For � ≥ 3 the gap between D and PL is slowly widening. However, 

PL obtains at least 97.9% of D’s revenues. 
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Apparently, restricting batch prices to a piecewise-linear pricing scheme leads only to a small cutback 

in revenues. Therefore, it might be favorable in many cases to implement this pricing scheme, as it is 

easy to communicate and performs very well. 

7 Conclusion 

In this study, we introduced a nonlinear dynamic pricing model. Our model is based on a customer 

choice model that captures customers’ base willingness-to-pay and consumption indicator. Although the 

resulting probability function is complex, we were able to simplify it by leveraging structural properties 

and removing non-essential batch prices from the action space. We proceeded with developing 

optimality conditions for the stage-wise optimization model and its fluid approximation. However, 

finding the optimal solution of the stage-wise optimization model remains challenging. To cope with 

these difficulties, we introduced three novel heuristics: one that uses a decomposition approach and two 

that calculate expected optimal prices. For every heuristic, we ensured approximate optimality by 

incorporating the solution of the fluid approximation.  

In a simulation study, the heuristics performed very well and quite similar with one of them being only 

slightly behind the other two. Moreover, they significantly outperformed two approaches that most 

likely might be applied in practice. We further analyzed both best performing heuristics and found 

several interesting characteristics of well-performing pricing policies: In cases with reasonably large 

stocks (in our setting with, e.g., �
�

≥ 2), batch prices for small batches are slowly decreasing over time. 

This is particularly interesting as it is an indicator that changing prices at a lower rate (not after every 

customer) might still perform well in the presence of multiunit demand. This makes the obtained policies 

also applicable in settings where the firm cannot sustain frequent changes in batch prices due to, e.g., 

technical reasons, customers’ reluctance, or strategic considerations. On the other hand, in scenarios 

with a limited stock (in our setting with, �
�

≥ 2), the importance of nonlinear pricing is declining, 

whereas a typical (standard) dynamic pricing structure becomes more and more relevant.  

Another finding is that batch prices are nearly linear for low- and medium-sized batches starting with 

the two-unit batch. This allows an easy to communicate price structure. Instead of displaying a long list 

containing prices for every possible batch size, the firm can quote two prices, one for the first unit and 

one for additional units. Another numerical study verified that this leads only to rather small cutbacks 

in revenue, offering a pragmatic balance between optimizing returns and operational applicability. 
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Supplement: Asymptotically Optimal Solutions for Nonlinear 

Dynamic Pricing in the Presence of Multiunit Demand 

S.1 Proof of Lemma 1 

We will show the first part of the lemma in detail. The second part follows by a similar argumentation.  

For every � ≠ � with �, � > � and �� − �� ≠ 0 ≠ �� − ��, it holds that �����

∑ �����
���

= �����

∑ �����
���

⇔  �����

�����
=

∑ �����
���

∑ �����
���

. W.l.o.g., we assume that � > � (otherwise we could focus on �����

�����
=

∑ �����
���

∑ �����
���

). We define the 

function �(�) =
∑ �����

���

∑ �����
���

 and note that �(�) is continuously differentiable. By differentiating �(�), we 

show that this function is monotonically increasing on the whole interval (0, 1): 

Applying the quotient rule, we note that 

�
��

�(�) > 0 ⇔ � ��
���

���

⋅
�
��

� ��
���

���

− � ��
���

���

⋅
�
��

� ��
���

���

> 0 . 

After some rearrangements of the sums, we get 

� ��
���

���

⋅
�
��

� ��
���

���

− � ��
���

���

⋅
�
��

� ��
���

���

=

= � �(� − �)��������
�

���

���

���

+ � �(� + � − � − � − �)��������

���

���

���

�������

+ � � (� + � − 1 − � − �)��������

��������

���

��������

�������

− � �(� − �)��������
�

���

���

���

− � �(� − �)��������

���

���

���

�������

− � � (� + � − 1 − � − �)��������

��������

���

��������

�������

= � �(� − �)��������
�

���

���

���

+ � �(� − � − �)��������

���

���

���

�������

> 0 

for all � ∈ (0, 1). Together with the independence of �����

�����
 from �, it follows that there is at most one 

� ∈ (0,1) such that �����

∑ �����
���

= �����

∑ �����
���

. 
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To show the second part of this lemma, we use a similar argumentation defining �(�) =
∑ �����

���

∑ �����
���

= 1 −

∑ �����
���

∑ �����
���

.               □ 

S.2 Proof of Lemma 2 

For any � > � it holds that max
�������

� �����

∑ �����
���

� ≤  �����

∑ �����
���

= min
�������

� �����

∑ �����
���

, 1� for every � ∈

����
���(�), ���

���
(�)� and max

�������
� �����

∑ �����
���

� =  �����

∑ �����
���

≤ min
�������

� �����
∑ �����

���
, 1� for every � ∈

����
���(�), ���

���
(�)�. We show the equality of both intervals by two equivalencies. The first one is given 

by  

max
�������

�
�� − ��

∑ �����
���

� ≤  
�� − ��

∑ �����
���

⇔  max
�������

�
�� − ��

∑ �����
���

� ≤
�� − ��

∑ �����
���

 

and the second one by 

�� − ��

∑ �����
���

= min
�������

�
�� − ��

∑ �����
���

, 1� 

⇔ �
�� − ��

∑ �����
���

≤ min
���������

�
�� − ��

∑ �����
���

�� ∧ � 
�� − ��

∑ �����
���

≤ min
�������

�
�� − ��

∑ �����
���

, 1�� 

⇔ �
�� − ��

∑ �����
���

≥ max
���������

�
�� − ��

∑ �����
���

� � ∧ � 
�� − ��

∑ �����
���

≤ min
�������

�
�� − ��

∑ �����
���

, 1��. 

Both equivalencies together result in the proof of the lemma. To verify both equivalencies, the following 

corollary might help.             □ 

Corollary 1  For � > � > �, one of the following three cases applies: 

1. �����
∑ �����

���
<  �����

∑ �����
���

< �����

∑ �����
���

 

2. �����
∑ �����

���
=  �����

∑ �����
���

= �����

∑ �����
���

 

3. �����
∑ �����

���
>  �����

∑ �����
���

> �����

∑ �����
���

 

Proof: As �����

∑ �����
���

= ∑ �����
���

∑ �����
���

⋅ �����
∑ �����

���
+

∑ �����
���

∑ �����
���

⋅ �����

∑ �����
���

  is a convex combination of �����
∑ �����

���
 and 

�����

∑ �����
���

, the statement above immediately follows.        □ 
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S.3 Proof of Lemma 3 

To prove the remaining part of Lemma 3, we again assume that our price vector does not follow the 

given condition, i.e. we choose �� such that ��� − �����
�

��� > ����� − ���
�
� ≥ 0. In this case, it holds that 

�������

���� > �������

��  for every � ∈ ������ − ���
�
� , 1� as: 

�� − ����

���� >
���� − ��

�� ⇔ � >
���� − ��

�� − ����
 

With �������

�������
= ����� − ���

�
� ⋅ � ���������

�
�

���������
�

���
�

���

< ����� − ���
�
� , it holds that the condition of the right 

side is met for every � ∈ ������ − ���
�
� , 1�. As �������

���� > �������

�� , it holds that  

� >
�� − ����

���� ⇒ � >
���� − ��

��  

and, thus, 

� ⋅ ���� > �� − ���� ⇒ � ⋅ �� > ���� − ��. 

This finally results in � ⋅ ∑ ���
��� − ���� ≥ � ⋅ ∑ �����

��� − �� for every � ∈ [0,1], � ∈ ������ − ���
�
� , 1� 

such that � ⋅ ∑ �����
��� − �� = max

���
�� ⋅ ∑ �����

��� − ���.  

With a similar argumentation, we can conclude that � ⋅ ∑ �����
��� − ���� ≥ � ⋅ ∑ �����

��� − �� for every 

� ∈ [0,1], � ∈ �0, ����� − ���
�
�� such that � ⋅ ∑ �����

��� − �� = max
���

�� ⋅ ∑ �����
��� − ���.  

All in all, we can summarize that for every batch size � and a corresponding batch price �� such that 

��� − �����
�

��� > ����� − ���
�
� , there is no customer who is willing to purchase � units.  

To eliminate demand for � units, the firm could also choose �� such that ��� − �����
�

��� = ����� − ���
�
� . 

This choice is always possible because of the continuity of prices and ���� ≤ ����. Thereof, there is no 

need to considers prices �� with ��� − �����
�

��� > ����� − ���
�
� .      □ 
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S.4 Proof of Lemma 4 

We recall that ℛ� = �� ∈ ℝ�: 0 ≤ �� ≤ ⋯ ≤ �� ≤ �, �� ≤ �  ∀ �, ��� − �����
�

��� ≤ 1 ��� � ≥

2, ��� ��� − �����
�

��� ≤ ����� − ���
�
�  ���  2 ≤ � ≤ � − 1� and Λ�(�) = �� ∈

[0, 1] | max
�������

� �����

∑ �����
���

� ≤  1 = min
�������

� �����

∑ �����
���

, 1�� = ���(�), ��(�)�. 

We start with a special case by observing, that for � ∈ ℛ� it holds by definition that ���� = �� ⇒ �� =

���� and �� > ���� ⇒ ���� > ��. Thus, either �� < �� < ⋯ < �� or there is index � with �� = �� = ⋯ =

�� < ���� < ⋯ < ��.  

For the letter case, it holds that Λ�(�) = Λ�(�) = ⋯ = Λ���(�) = ∅. There is no clear choice of 

��(�), ��(�), � < �. As � ≠ � a.s. for any � ∈ [0,1], we can as well choose ��(�), = ��(�) = 0 (for 

consistency) even though ���(�), ��(�)� ≠ ∅.  

In the following, we will concentrate on � with �� < ���� regardless of whether � starts at 1 or at the 

aforementioned �. 

Based on  � ∈ Λ�(�) ⇒ 1 = min
�������

� �����

∑ �����
���

, 1�, we are interested in the order the lines ���(�) =

�����

∑ �����
���

, � ≥ � + 1, are dropping below 1 for given � ∈ ℛ�. As ���(�) is decreasing in � ∈  [0, 1] this 

happens at most once on [0, 1]. 

First, we note that �������

�� = 1 ⇔ � = ����� − ���
�
�  as �� < ����. Thereof, we can already conclude from 

� ∈ ℛ� that ����,�(�) drops below 1 before (or at the same time as) ����,���(�) does, for every � ≥ �. 

By Corollary 1, we know that ����,�(�) is dropping below 1 between ����,�(�) and ����,���(�). 

Repeatedly applying Corollary 1 shows that ����,�(�) is between ����,�(�) and ����,���(�), ����,�(�) is 

between ����,�(�) and ����,���(�), and so on. We can therefore conclude that the correct order of lines 

���(�), � > �, dropping below 1 is ����,�(�), ����,�(�), … , ���(�). Most importantly, the last � ∈ [0,1] with 

1 = min
�������

����(�), 1� is the point where ����,�(�) = 1. At this point ���(�) ≥ 1, � > �, because of the 

given order and the fact that every ���(�) is decreasing in �. This point is given by � = ����� − ���
�
� and 

we know that the condition  1 = min
�������

� �����

∑ �����
���

, 1� is met for every � ≤ ����� − ���
�
� . We now can set 

��(�) = ����� − ���
�
� . For � = �, the condition is always met, and we set ��(�) = 1. 
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We now concentrate on max
�������

����(�)� ≤  1. For � = 1, this boils down to �� ≤ 1 and is always fulfilled 

for � ∈ ℛ�. In this case we set ��(�) = 0. If there is an index � with �� = �� = ⋯ = �� < ���� < ⋯ < ��, 

then max
�������

{���(�)} = 0. In this case, we set ��(�) = 0. For the remaining cases, we again apply 

Corollary 1. With the same argumentation as above, we can conclude that the correct order of lines 

���(�), � > �, dropping below 1 is ���(�), ���(�), … , ��,���(�). Some of these ���(�), � < �, might be 

below 1 for every � ∈ [0, 1]. However, this does not affect the proof of this Lemma. Particularly, it holds 

that ��,���(�) ≤ 1 ⇔ ���(�) ≤ 1 ∀� < � ⇔ max
�������

����(�)� ≤  1 because of the given order and the fact 

that every ���(�) is decreasing in �. Therefore, the condition max
�������

����(�)� ≤  1 is met for every � ≥

��� − �����
�

���. We now can set ��(�) = ��� − �����
�

���. 

To sum up, we have shown that ��(�) = 0, ��(�) = 1 and ��(�) = ����� − ���
�
� = ����(�) and, thus, the 

whole lemma.              □ 

S.5 Proof of Lemma 5 

Exemplarily, we will walk one of these cases through and assume that � > �. The other two would follow 

in a similar matter and we decided to omit a detailed derivation.  

Partially differentiating (5) leads to 
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�
� ��

��(�) = �� �����(�)� ⋅
�

� ��
����(�) − �� ���(�)� ⋅

�
� ��

��(�)

+ �
1

∑ �����
���

 �� �
�� − ��

∑ �����
���

� ��(�) ��

���(�)

���(�)

+ � ��� �
�� − ��

∑ ����(�)�
�

���
���

� ⋅ �� ����(�)� ⋅
�

� ��
���(�) − �� �

�� − ��

∑ ����(�)�
�

���
���

�
�

�����

⋅ �� ����(�)� ⋅
�

� ��
���(�)�

− � ��� �
�� − ��

∑ ����(�)�
����

���

� ⋅ �� ����(�)� ⋅
�

� ��
���(�) − �� �

�� − ��

∑ ����(�)�
����

���

�
���

���

⋅ �� ����(�)� ⋅
�

� ��
���(�)� = �

1
∑ �����

���
 �� �

�� − ��

∑ �����
���

� ��(�) ��

���(�)

���(�)

 

The last equation holds because there are many terms that neutralize each other. This can be observed 

by: 

 In Remark 1, we established that ��
���

(�) is the maximum of ���(�) for � > � as well as the 

maximum of ���(�) for � < �. This can be articulated as ��
���

(�) = max
���

����(�)� =

max
���

����(�)�. For now, we define ���� = arg max
���

����(�)� and ���� = arg max
���

����(�)�. 

Using the same argumentation as outlined in Remark 2, we conclude that 
��������

∑ �������(�)�
�������

���

=

��������

∑ �������(�)�
����

������

 and �
� ��

������(�) = �
� ��

������
(�). 

 Moreover, we know from Remark 2 that for every ���(�) ≠ ��
���

(�) there is ���(�), ℎ > �, such 

that �����

∑ ����(�)�
����

���

= �����

∑ ����(�)�
����

���

 and �
� ��

���(�) = �
� ��

���(�). 

 The same conclusion holds for ���(�) ≠ ��
���

(�) and its corresponding ���(�), ℎ < �. 
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 Remark 2 further reveals that �
� ��

����(�) = �
� ��

����,�(�) and �������

�����,�(�)�
� = 1. Analogously, it 

holds that �
� ��

��(�) = �
� ��

��,���(�) and �������

���,���(�)�
��� = 1. 

Using all of these equations, we get �
� ��

��(�) = ∫ �
∑ �����

���
 �� � �����

∑ �����
���

� ��(�) �����(�)
���(�) . With similar 

steps, we can build the partial differentiations for cases � < � and � = �.     □ 

S.6 Proof of Proposition 1 

An optimal solution for (11) is either found at the boundary of feasible region ℛ� or when it satisfies 

the first order condition �
� ��

�∑ ��(�) ⋅ ��� − Δ�����(�)��
��� � = 0 for every �. The condition for 

optimality at an interior point is straightforward; however, exploring optimality at the boundary requires 

additional consideration: A solution residing on the boundary is marked by at least one batch size � for 

which ��(�) = 0. For simplicity, let us initially consider the scenario with only one such batch size �, 

though the argument can be extended to multiple batch sizes where demand is nullified. 

Eliminating the option to purchase � units a priori and reapplying the optimization yields an identical 

optimality condition, except the summation now omits the index �. This index can be reintegrated into 

the summation because, by definition ���(�) = ���(�) (���(�) = ���(�)) for � > � (� < �), rendering the 

integral ∫
������(�)�������(�)

∑ �����
���

��(�) �����(�)
�(�) = 0 (∫

������(�)�������(�)
∑ �����

���
��(�) �����(�)

���(�) = 0). Furthermore, 

given the definitions of ��(�) and ����(�), it follows that �� �����(�)� − �� ���(�)� = 0. Combining all 

these arguments leads to ��� �����(�)� − �� ���(�)�� − ∑ ∫  ������(�)�������(�)
∑ �����

���
��(�) �����(�)

���(�)
�
����� +

∑ ∫
������(�)�������(�)

∑ �����
���

��(�) �����(�)
���(�)

���
��� = 0. Particularly, it holds for every � with ��(�) = 0 that 

�
� ��

�∑ ��(�) ⋅ ��� − Δ�����(�)��
��� � = 0.  

In summary, whether at the boundary or an interior point, the optimal solution must satisfy the first order 

condition �
� ��

�∑ ��(�) ⋅ ��� − Δ�����(�)��
��� � = 0 for every �, reinforcing the comprehensive nature 

of the optimality condition across the entire decision space.     □ 



 8 

S.7 Proof of Proposition 3 

In the following proof, we assume that all three conditions are fulfilled. The proof itself is quite 

technical, hiding the specific ideas behind a lot of math. In the following lines, we want to show that 

these conditions lead to a scenario, where only the events of selling 0, � − 1, and � + 1 units limit the 

probability of selling � units. We recall that for any given � ∈ [0, 1], selling � units only occur iff 

max
�������

�
�� − ��

∑ �����
���

� ≤ � ≤ min
�������

�
�� − ��

∑ �����
���

, 1�. 

In our first step, we show that conditions 1 and 2 reduces the upper bound min
�������

� �����

∑ �����
���

, 1� to 

min ��������

�� , 1�. Thereby, we prove that in the customer choice model the options of purchasing more 

than � + 1 units are in no direct competition with the option of purchasing � units. Analogously, we 

determine that the lower bound reduces to max ��������

���� , ��

∑ �����
���

�, leaving only the events of selling 0 

or � − 1 units as relevant options for customers, who may purchase � units. 

1. From condition 1, we know that for any � it holds that �������

�� ≥ �������

����  for every � ≤ ��
���

(�) 

Additionally, in combination with condition 2, we also know that �������
�� ≥ �������

����  for every � ≥

� and � ≤ ��
���

(�). Consequently, it also follows that �����

∑ �����
���

≥ �������

��  for every � ≤ ��
���

(�). 

Which ultimately yields min
�������

� �����

∑ �����
���

, 1� = min ��������

�� , 1� for every � ≤ ��
���

(�). 

2. Condition 3 implies that ��
���

(�) is defined by the two specific lines, �������

��  (the remaining part 

of the upper bound) and ��

∑ �����
���

 (part of the lower bound). Thereby, we know that ��

∑ �����
���

=

max
�������

� �����

∑ �����
���

� if � = ��
���

(�).   

To prove max
�����

��������

∑ ���
���

� = max ��������

�� , ����

∑ ���
���

� for � ≤ ����
���

(�), we split the interval 

�0, ����
���

(�)� in three parts: �0, ��
���

(�)�, ��
���

(�), and ���
���

(�), ����
���

(�)� and show that 



 9 

max
�����

��������

∑ ���
���

� = max ��������

�� , ����

∑ ���
���

� holds on all three parts. We know from the definition 

of ��
���

(�) that �������

�� > max
�������

� �����

∑ �����
���

� for � < ��
���

(�). With some calculus, this order 

carries over to �������

�� > max
�������

��������

∑ �����
���

� for � < ��
���

(�). Consequently, it holds that �������

�� ≥

max
�����

��������

∑ �����
���

� for � < ��
���

(�), proving the first part. For the second part, � = ��
���

(�), we know 

that �������

�� = ��

∑ �����
���

, which can be extended to ����

∑ ���
���

= ��

∑ �����
���

= �������

�� . With continuity 

of the lines, it also holds that ����

∑ ���
���

= �������

�� ≥ max
�����

��������

∑ �����
���

� for � = ��
���

(�). For the third 

and last part, we make use of Lemma 1, which outlines that lines could only cross each other at 

most once. As �������

�� = max
�����

��������

∑ �����
���

� for � = ��
���

(�) and for � = ����
���

(�), as per condition 

3, it follows that �������

�� = max
�����

��������

∑ �����
���

� for every ��
���

(�) ≤ � ≤ ����
���

(�). Otherwise, there 

would be two lines which intersect at least two times.  

With these two steps, we have shown that batch prices that fulfill the stated conditions lead to a certain 

structure of the probability function. Thereby, the probability of selling � units is only limited by three 

events: selling 0, � − 1, and � + 1 units.          □ 

S.8 Calculation of ��
�,�(�) for �, �~�[�, �] 

We now only have two possibilities for ��
���

(�) (cf. Remark 1): 

1. �������

�������
 

or 

2. � such that �������

�� = ��

∑ �����
���
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The lower of these two possible values is ��
���

(�). If the first case applies, it holds that Λ��
���(�) = ∅ , 

Λ�,���
��� (�) = ���(�), ��

���
(�)�, and Λ���,�

��� (�) = �����(�), ��
���

(�)�. If the second case applies, it holds 

that Λ��
���(�) = �����

���
(�), ��

���
(�)�, Λ�,���

��� (�) = ���(�), ����
���

(�)�, and Λ���,�
��� (�) = �����(�), ��

���
(�)�. 

To express the demand function for both cases with one formulation, we bring back the notation ���
���(�) 

and ���
���

(�). In the first case, we choose ��,���
��� (�) = ��(�) and ��,���

���
(�) = ���

���(�) = ���
���

(�) =

��
���

(�). In the second case, we choose ��,���
��� (�) = ��(�), ��,���

���
(�) = ���

���(�) = l���
���

(�), and 

���
���

(�) = ��
���

(�). 

Now, we can write ��
�,�(�) = −(�� − ��) ⋅ log(��), ��

�,�(�) = −(�� − ��) ⋅ � �

 ��
���

(�)
− �

��(�)� + ��(�) −

��(�) − �� ⋅ �log �1 + ��
���

(�)� − log �1 + ���
���(�)�� + (�� − ��) ⋅ log(��), and ��

�,�(�) =

− �������

���
⋅ � �

� ��
���

(�)�
��� − �

�����(�)�
���� + ����(�) − ��(�) − ∫

��

∑ �����
���

����
���

(�)
���

���(�) + �������

���
⋅

� �

���,���
���

(�)�
��� − �

���(�)�
����. 


